Name

1. Let $X \sim \operatorname{Exp}(\lambda)$.
(a) (10 points) Find the pdf of $Y=2 X$.
(b) (10 points) Find the pdf of $Y=X^{2}$.
(c) (10 points) Find the pdf of $Y=X^{3}$.
2. Let X have the pmf

$$
p_{X}(x)=\left\{\begin{array}{ll}
\frac{1}{8} & x \in\left\{ \pm 1, \pm \frac{1}{2}\right\} \\
\frac{1}{2} & x=0 \\
0 & \text { otherwise }
\end{array} .\right.
$$

Find the pmf for the following functions:
(a) (10 points) X^{2}.
(b) (10 points) e^{X}.
3. Let $X_{1}, X_{2} \stackrel{i i d}{\sim} \operatorname{Exp}\left(\frac{1}{2}\right)$.
(a) (10 points) Find the pdf of $Y=X_{1}+X_{2}$.
(b) (10 points) Find the pdf of $Y=X_{1}-X_{2}$.
(c) (10 points) Find the pdf of $Y=\max \left(X_{1}, X_{2}\right)$.
(d) (10 points) Find the pdf of $Y=\min \left(X_{1}, X_{2}\right)$.
4. (10 points) Let X be normally distributed with parameters $\mu=0$ and $\sigma^{2}=1$. What is the pdf of X^{2} ?
5. Extra Credit: No proofs are needed for the following questions. If you don't know the answer, feel free to make an educated guess. You can give the pdf/pmf, or just give the name and parameters of the distribution.
(a) (2 points) If $X_{1}, \ldots, X_{n} \stackrel{i i d}{\sim} \operatorname{Exp}(\lambda)$, what is the distribution of $Y=\sum_{i=1}^{n} X_{i}$?
(b) (2 points) If $X \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$, what is the distribution of $Y=\left(\frac{X-\mu}{\sigma}\right)^{2}$?
(c) (2 points) If $X_{1}, \ldots, X_{n} \stackrel{i i d}{\sim} \mathrm{~N}\left(\mu, \sigma^{2}\right)$, what is the distribution of $Y=\sum_{i=1}^{n}\left(\frac{X_{i}-\mu}{\sigma}\right)^{2}$?
(d) (2 points) What are two possible sets of the name and parameter value of the marginal distribution of Y in question 1(a)?
(e) (2 points) What are two possible sets of the name and parameter value of the distribution of Y in question 3(a)?

