STAT/MATH 395 B
Derby

Midterm
August 8, 2008

Name

1. Suppose that the random variables X and Y have the joint pdf

$$
f_{X Y}(x, y)= \begin{cases}x e^{-x(y+1)} & x>0, y>0 \\ 0 & \text { otherwise }\end{cases}
$$

(a) (10 points) Find the pdf of X.
(b) (10 points) Find the pdf of Y.

$$
f_{X Y}(x, y)= \begin{cases}x e^{-x(y+1)} & x>0, y>0 \\ 0 & \text { otherwise }\end{cases}
$$

(c) (10 points) Find the pdf of $Y \mid X$ (i.e., Y given X).
(d) (10 points) Find the pdf of $X Y$.

$$
f_{X Y}(x, y)= \begin{cases}x e^{-x(y+1)} & x>0, y>0 \\ 0 & \text { otherwise }\end{cases}
$$

(e) (10 points) Find the pdf of $\max (X, Y)$.
(f) (10 points) Find $F_{X}(x)$.

$$
f_{X Y}(x, y)= \begin{cases}x e^{-x(y+1)} & x>0, y>0 \\ 0 & \text { otherwise }\end{cases}
$$

(g) (10 points) Find $F_{X Y}\left(\frac{1}{2}, \frac{3}{4}\right)$.
(h) (5 points) Find $F_{X}\left(\frac{1}{2}\right)$.
(i) (5 points) Are X and Y independent? Why?
2. Let X be the outcome of rolling one fair die, and Y be equal to 1 if a fair coin is flipped and results in heads, and 0 otherwise.
(a) (10 points) What is the joint pdf of X and Y ?
(b) (10 points) Find the pdf of $X+Y$.
3. Extra Credit: No proofs are needed for the following questions. If you don't know the answer, feel free to make an educated guess. You can give the pdf/pmf, or just give the name and parameters of the distribution.
(a) (2 points) If $X_{1}, \ldots, X_{n} \stackrel{i i d}{\sim} \mathrm{P}(\lambda)$, what is the distribution of $Y=\sum_{i=1}^{n} X_{i}$?
(b) (2 points) If $X_{1}, \ldots, X_{n} \stackrel{i i d}{\sim} \operatorname{Exp}(\lambda)$, what is the distribution of $Y=\sum_{i=1}^{n} X_{i}$?
(c) (2 points) If $X_{1}, \ldots, X_{n} \stackrel{i i d}{\sim} \mathrm{~N}\left(\mu, \sigma^{2}\right)$, what is the distribution of $Y=\sum_{i=1}^{n} X_{i}$?
(d) (2 points) If $X_{1}, \ldots, X_{n} \stackrel{i i d}{\sim} \mathrm{~N}\left(\mu, \sigma^{2}\right)$, what is the distribution of $Y=\sum_{i=1}^{n}\left(\frac{X_{i}-\mu}{\sigma}\right)^{2}$?
(e) (1 point) What is the name and parameter value of the marginal distribution of Y in question 2 ?
(f) (1 point) What is the name and parameter value of the distribution of $Y \mid X$ in question 1 (c)?

