Name
For any of these questions, you can use any result from my cheat sheet $=$ Appendix C .

1. (20 points) To reward herself for finishing STAT $394 / 395$, Stephanie gets herself a unicorn. However, the unicorn escapes and she must find it. Assume that Stephanie and her unicorn are each at different points X and Y that are uniformly distributed on a road of length L. If X and Y are independent, find the expected value and variance of the distance between Stephanie and her unicorn.
2. (10 points) Let $X_{1} \sim \mathrm{~N}(4, \sigma=2)$ and $X_{2} \sim \mathrm{~N}(3, \sigma=5)$ be independent from each other. Determine the distribution of $Y=2 X_{1}-3 X_{2}+6$, and prove your answer.
3. Suppose that X and Y are two random variables jointly distributed with pdf

$$
f_{X, Y}(x, y)= \begin{cases}y^{2} e^{-y(x+1)} & x, y \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

(a) (10 points) Determine $f_{X \mid Y}(x \mid y)$.
(b) (5 points) What is the name and parameter value of the distribution found in part (a) above?
4. Let $f_{X}(x)=\lambda e^{-\lambda(x-\alpha)}, x>\alpha$ for some $\lambda>0$.
(a) (15 points) Find the moment generating function for this distribution. For what range of t does this exist?
(b) (15 points) Use this moment generating function to determine $\mathrm{E}[X]$ and $\operatorname{Var}(X)$.
5. (15 points) When a sample of $2 n+1$ random variables are observed, the $(n+1)^{\text {th }}$ smallest value is called the sample median. Suppose a random sample of size 3 is taken from a uniform distribution over $(0,1)$. Find the probability that the sample median is between $\frac{1}{4}$ and $\frac{3}{4}$.
6. (10 points) From past experience, Nate knows that the test score of a student taking his final exam is a random variable with mean of 75 and standard deviation of 5 . How many students would have to take the exam so as to ensure, with probability at least 90%, that the class average would be within 5 of 75 ? Use the weak law of large numbers.

7. Extra Credit Problems

(a) (5 points) In problem 7, without using the standard deviation, give an upper bound for the probability that a student's test score will be 85 or above. That is, we are assuming that the standard deviation is unknown.
(b) (5 points) Now using the standard deviation if necessary, give a lower bound of the probability that a student will score between 65 and 85 .

