Counting Problems on Different Levels

Frequently in counting problems we count in two or more different levels. Cards are an example of this, whereby we count the number of different numbers as well as the number of different suits. Example B.4.1 on page 235 of the notes is one complex example of this. Here we provide a few preliminary examples which lead up to that one.

1. Suppose we draw 2 cards from a normal 52 -card deck. What is the probability that we get a pair - meaning, two cards of the same number, but different suits?

Solution:

First of all, the denominator of this fraction is $\binom{52}{2}$, since we are choosing 2 cards out of 52 .
For the numerator, we first pick a number out of the 13 available ones. For any number that we pick, we will choose 2 of the four suites:

$$
\underbrace{\binom{13}{1}}_{\substack{\text { choose } \\ 1 \text { number }}} \cdot \underbrace{\binom{4}{2}}_{\substack{\text { choose } \\ 2 \text { suits }}}
$$

Altogether, our probability is

$$
\frac{\binom{13}{1}\binom{4}{2}}{\binom{52}{2}}
$$

2. Suppose we draw 3 cards from a normal 52-card deck. What is the probability that we get a triple - meaning, three cards of the same number, but different suits?

Solution:

For similar logic as above, our denominator is $\binom{52}{3}$. For the numerator, we again pick a number out of the 13 available ones. For any number that we pick, we will choose 3 of the four suites:

$$
\underbrace{\binom{13}{1}}_{\substack{\text { choose } \\ 1 \text { number }}} \cdot \underbrace{\binom{4}{3}}_{\substack{\text { choose } \\ 3 \text { suits }}}
$$

Altogether, our probability is

$$
\frac{\binom{13}{1}\binom{4}{3}}{\binom{52}{3}}
$$

3. Suppose we draw 4 cards from a normal 52 -card deck. What is the probability that we get two different pairs - meaning, for two different numbers?

Solution:

Now our denominator is $\binom{52}{4}$. For the numerator, we now pick two (different) numbers out of the 13 available ones. For any number that we pick for either of those, we will choose 2 of the four suites:

$$
\underbrace{\binom{13}{2}}_{\substack{\text { choose } \\ 2 \text { numbers }}} \cdot \underbrace{2 \text { suits }}_{\text {choose }}\binom{4}{2}^{2}
$$

The $\binom{4}{2}$ term above is squared because we are doing this for each of the two numbers chosen. Altogether, our probability is

$$
\frac{\binom{13}{2}\binom{4}{2}^{2}}{\binom{52}{4}}
$$

4. Suppose we draw 4 cards from a normal 52 -card deck. What is the probability that we get a pair and two singletons - meaning, two of one number, then one of another number, and one of yet another number?

Solution:

Again,our denominator is $\binom{52}{4}$. For the numerator, we now pick three (different) numbers out of the 13 available ones. Of these three, we choose one to be for the pair - the other two will be for the singleton. We then pick two suits for the pair, and one for each of the two singletons:

$$
\underbrace{\binom{13}{3}}_{\begin{array}{c}
\text { choose } \\
3 \text { numbers }
\end{array}} \cdot \underbrace{\binom{3}{1}}_{\begin{array}{c}
\text { choose } \\
\text { number } \\
\text { for pair }
\end{array}} \cdot \underbrace{\binom{4}{2}}_{\begin{array}{c}
\text { choose } \\
\text { for puits } \\
\text { for pair }
\end{array}} \cdot \underbrace{\binom{4}{1}^{2}}_{\begin{array}{c}
\text { choose } \\
\text { singlet for } \\
\text { singlens }
\end{array}}
$$

The $\binom{4}{2}$ term above is squared because we are doing this for each of the two numbers chosen. Altogether, our probability is

$$
\frac{\binom{13}{3}\binom{3}{1}\binom{4}{2}\binom{4}{1}^{2}}{\binom{52}{4}}
$$

5. Suppose we draw 5 cards from a normal 52 -card deck. What is the probability that we get a pair and a triple?

Solution:

Now our denominator is $\binom{52}{5}$. For the numerator, we now pick two (different) numbers out of the 13 available ones. Of these two, we choose one to be for the pair - the other will be for the triple. Furthermore, as before, we pick 2 and 3 suits for the pair and triple, respectively:

The $\binom{4}{2}$ term above is squared because we are doing this for each of the two numbers chosen. Altogether, our probability is

$$
\frac{\binom{13}{2}\binom{2}{1}\binom{4}{2}\binom{4}{3}}{\binom{52}{5}}
$$

6. Suppose we draw 5 cards from a normal 52 -card deck. What is the probability that we get a flush - meaning, that all five cards are of the same suit?

Solution:

Again, our denominator is $\binom{52}{5}$. For the numerator, we first pick one suit out of the four. Then we choose 5 numbers out of the 13 :

$$
\underbrace{\binom{4}{1}}_{\text {choose }} \cdot \underbrace{\binom{13}{5}}_{\text {choose }}
$$

Altogether, our probability is

$$
\frac{\binom{4}{1}\binom{13}{5}}{\binom{52}{5}}
$$

7. Suppose we draw 5 cards from a normal 52 -card deck. What is the probability that we get a straight - meaning, that all numbers are in a sequence, where the ace can be either high or low?

Solution:

Again, our denominator is $\binom{52}{5}$. For the numerator, we note that there are 10 sequences possible:

$$
\begin{gathered}
A, 2,3,4,5 \\
2,3,4,5,6 \\
3,4,5,6,7 \\
\vdots \\
9,10, J, Q, K \\
10, J, Q, K, A
\end{gathered}
$$

For each of these sequences, each of the 5 cards can be any of the 4 suits. Therefore, our numerator is simply

$$
10 \cdot 4^{5}
$$

so that our probability is

$$
\frac{10 \cdot 4^{5}}{\binom{52}{5}}
$$

