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Notation

Notation

The following notation will be used consistently throughout these notes:

Z The set of integers: {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}.
Z+ The set of natural, or counting, numbers: {1, 2, 3, . . .}.
Z∗ The set of whole numbers: {0, 1, 2, 3, . . .}.
Z− The set of negative integers: {. . . ,−3,−2,−1}.
R The set of real numbers.

R+ The set of positive real numbers.

R− The set of negative real numbers.

Q The set of rational numbers:
{
a
b : a, b ∈ Z

}
.

∅ The empty set (set with no elements in it).

∪ Union (of two sets).

∩ Intersection (of two sets).

∀ “For all”

∃ “There exists”

� “such that”

In some other texts, N is used to denote the set of natural numbers Z+. This notation is not used in this text, but
it is valid and commonly used.
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1 - Algebra of Sets

1 Algebra of Sets

1.1 Elementary Set Theory

Definition 1.1.1. A set is a collection of objects.

Examples of sets include

• The set of all positive integers: Z+ = {1, 2, 3, . . .}.

• The set of all white mice in a room.

Sets are usually denoted by capital italic letters, such as A, B, N , I, S, etc.

Definition 1.1.2. An element or member of a set is an object that belongs to the set in question. If b is an element
of the set S, then we use the notation b ∈ S.

Definition 1.1.3. A set is completely described if a rule is given that determines whether any particular object is
an element of that set.

Example 1.1.1. Let A be the set of numbers 2, 4 and 6. Then we write A = {2, 4, 6}. This set is finite, since it
has a finite number of elements. Note that 2 ∈ A, 4 ∈ A, 6 ∈ A but 8 6∈ A. The notation 6∈ means “does not belong
to”. �

Definition 1.1.4. The size or cardinality of a finite set is the number of elements in the set. We use the notation
|A| to denote the size (or cardinality) of the set A.

Example 1.1.2. Let B be the set of all positive even integers:

B = {2, 4, 6, 8, 10, . . .}.

This is not as clear as
B = {x : x = 2n, n is a positive integer }

or
B = {x : x = 2n, n ∈ Z+}, where Z+ denotes the set of positive integers.

The set B is infinite, since it has infinitely many members. In fact, B is countably infinite. �

Definition 1.1.5. A countably or denumerably infinite set is an infinite set whose members can be labeled with
subscripts such that every positive integer is used as a subscript exactly once. An infinite set which is not countably
infinite is an uncountably infinite set.

Example 1.1.3. For example,

B = {x : x = 2n, n ∈ Z+}
Q = {n : n ∈ Z−}

1



1 - Algebra of Sets

are countably infinite sets. Examples of uncountably infinite sets are

C = {x : 0 < x < 6, x ∈ R}
D = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, x, y ∈ R}.

The set
E = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, x, y ∈ Z+}

is a finite set. In fact, E = {(1, 1)}. �

Example 1.1.4. The members of a set need not have any recognizable properties in common. For example, consider
the set

{University of Washington, Toronto, 9}.

Definition 1.1.6. If every member of a set A is also a member of a set B, then A is called a subset of B. Equivalently,
A is contained in B. We use the notation A ⊂ B, or A ⊆ B, or analogously, B ⊃ A, or B ⊇ A.

Example 1.1.5. If A = {2, 4, 6} and B = {2, 4, 6, 8, 10}, then A ⊂ B. Note two different concepts (and notations)
here:

{2} ⊂ A ⇒ The set which contains 2 as its only element is a subset of the set A
2 ∈ A ⇒ The element 2 is a member of the set A �

Definition 1.1.7. The sets A and B are equal, denoted A = B, if and only if A ⊂ B and B ⊂ A.

Definition 1.1.8. The empty or null set is the set which has no members. The empty set is denoted by either { }
(literally, a set with no members in it) or by ∅ (which is sometimes also written as ∅). By convention, the empty set
is considered to be a subset of all sets. Thus, if A is any set, ∅ ⊂ A.

Example 1.1.6. Let S = {a, b, c}. Then then subsets of S are

∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}. (1.1.1)
�

If S is a finite set of size n (i.e., S has n members), then it can be shown that the number of possible subsets of S is
2n. For this reason, the collection of all possible subsets of S is denoted as 2S . For example, for S in Example 1.1.6,
the collection of sets 2S is given by (1.1.1). Note that it has 2n = 23 = 8 subsets.

Definition 1.1.9. A is a proper subset of B if A ⊂ B but A 6= B and A 6= ∅.

Definition 1.1.10. The universal set, denoted U , is a set which contains as subsets all sets within a specific
discussion.

Example 1.1.7. If we want to discuss the number of live polio vaccines within a given batch of vaccines, we might
let U be the set of all positive real numbers. That is, U = Z+. It would suffice, however, to let U = {x : x ∈ Z+,
x ≤ 1023}. �

2



1 - Algebra of Sets

Definition 1.1.11. Let A ⊆ U . The set which consists of all elements of U which are not in A is called the
complement of A with respect to (wrt) U , and is denoted by a few different notations, such as

Ā, Ac, A∗, ∼A, U−A, or U/A.

In these notes, we shall use the notation Ac.

Note that for arbitrary sets A and B, B/A is used to denote the elements of B which are not in A. The set A need
not be a subset of B.

Example 1.1.8 (Venn Diagram). Draw a geometric shape on the plane and assume that points interior to and
on the boundary of the figure constitute the set.

A

U

Ac = U/A is the shaded region.

A B A/B is the shaded region.

�

Example 1.1.9. If U = {1, 2, 3} and A = {1, 2}, then Ac = {3}. If B = {2, 3, 4}, then B/A = {3, 4} and
A/B = {1}. �

Definition 1.1.12. If A and B are sets, then A intersection B is the set of all elements which belong to both A and
B. This is denoted by A ∩B, or simply AB.

Note that A ∩B = B ∩A. That is, order is not important; the operation is commutative.

Example 1.1.10. If A = {a, b, c, d} and B = {a, d, f}, then A ∩B = {a, d}.

A B AB is the shaded region. �

Definition 1.1.13. If A and B are sets, then A union B is the set of all elements which belong to either A or B,
or both. This is denoted by A ∪B.

3



1 - Algebra of Sets

Note that A ∪B = B ∪A. Again, the operation is commutative.

Example 1.1.11. If the sets A = {a, b, c, d} and B = {a, d, f}, then A ∪B = {a, b, c, d, f}.

A B A ∪B is the shaded region. �

Definition 1.1.14. Two sets are disjoint if (and only if) they have no elements in common. That is, if A∩B = ∅.

Theorem 1.1.1 (DeMorgan’s Laws). (
n⋃
i=1

Ei

)c
=

n⋂
i=1

Eci (1.1.2)(
n⋂
i=1

Ei

)c
=

n⋃
i=1

Eci (1.1.3)

Proof: Suppose x ∈ (∪iEi)c. Then x 6∈ ∪iEi, which means that x 6∈ Ei ∀i. Thus, x ∈ Eci ∀i ⇒ x ∈ ∩iEci . Now
suppose that x ∈ ∩iEci . Then x ∈ Eci ∀i ⇒ x 6∈ Ei ∀i ⇒ x 6∈ ∪iEi ⇒ x ∈ (∪iEi)c. This proves (1.1.2).

Using (1.1.2), (
n⋃
i=1

Eci

)c
=

n⋂
i=1

(Eci )
c =

n⋂
i=1

Ei

since (Ec)c = E for any set E. Taking the complement of both sides gives us (1.1.3). �

Definition 1.1.15. An n-tuple (x1, x2, . . . , xn) is an array of n symbols x1, x2, . . . , xn which are called, respectively,
the first component, the second component, . . . , the nth component.

Two n-tuples are equal iff they have the same symbols in the same order. That is,

(2, 7, 8) = (2, 7, 8),
(2, 7, 8) 6= (2, 8, 7).

However, in a set, the order of the elements is not important. That is,

{2, 7, 8} = {2, 8, 7}.

Note that the 3-tuple (1, 0, 1) cannot be condensed, but the set {1, 0, 1} is equal to {0, 1} or {1, 0}.
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1 - Algebra of Sets

1.2 Set Functions

In calculus, functions like

f(x) = 2x+ 6, −∞ < x <∞

or

h(x, y) = e−(x+y), x > 0, y > 0

are called point functions. They are evaluated at a point, such as x or (x, y). When we evaluate a function at a set
instead of at a point, we call it a set function.

Example 1.2.1. Let A be a set of points in one-dimensional space (on the real line). Let Q(A) be equal to the
number of points in A which correspond to positive integers. Q(·) is a function of the set A. As examples,

A = {x : 0 < x < 5} ⇒ Q(A) = 4,
A = {x : x = −2,− 1} ⇒ Q(A) = 0,
A = {x : −∞ < x < 6} ⇒ Q(A) = 5.

The domain of Q(·) is the set of subsets of the reals R. The range of Q(·) is the set of non-negative integers Z∗. �

Example 1.2.2. Let A be a set in two-dimensional space. Let Q(A) be equal to the area of A if A has finite area,
and undefined otherwise. As examples,

A = {(x, y) : x2 + y2 < 1} ⇒ Q(A) = π,

A = {(x, y) : (x, y) = (0, 0), (1, 1), (0, 1), (1, 0)} ⇒ Q(A) = 0,
A = {(x, y) : x ≥ 0, y ≥ 0} ⇒ Q(A) is undefined. �

Example 1.2.3. Let A be a set in one-dimensional space, and Q(A) =
∫
A

e−x dx.

A = {x : 0 < x <∞} ⇒ Q(A) =
∫ ∞

0

e−x dx = 1,

A = {x : 0 < x < 1} ⇒ Q(A) =
∫ 1

0

e−x dx = 1− e−1. �

Definition 1.2.1. A class is a set whose elements are all sets. The set of all subsets of a set is a class. We use script
letters to denote classes; A, X , etc.

Definition 1.2.2. Let Y be a class of sets. A rule µ(·) which associates with each A ∈ Y one and only one real
number µ(A) is called a real-valued set function defined on Y. The domain and range of µ(·) are Y and R, respectively.

Definition 1.2.3. A class Y is closed wrt some (binary) operation f iff for every A,B ∈ Y, AfB ∈ Y.

5



1 - Algebra of Sets

Example 1.2.4. Let Y = {∅, {a}} and f = union. Then Y is closed wrt f , since

∅ ∪ {a} = {a} ∈ Y,
{a} ∪ {a} = {a} ∈ Y,

∅ ∪∅ = ∅ ∈ Y.

If f = intersection, then Y is closed wrt f , since

∅ ∩ {a} = ∅ ∈ Y,
{a} ∩ {a} = {a} ∈ Y,

∅ ∩∅ = ∅ ∈ Y.

If Y = {{a}, {b}}, then Y is not closed wrt ∪ nor wrt ∩. �

Is the set of all subsets of a finite set S closed wrt ∪ and ∩? We often require that Y be closed wrt one or more
operations. This will be true when Y is the domain for a probability function.

6
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2 Fundamental Definitions and Axioms

2.1 Random Experiments and Sample Spaces

Definition 2.1.1. A random experiment is one which can be repeated under the same conditions but whose outcome
cannot be predicted with certainty.

Example 2.1.1. Examples of random experiments include experiments to determine the effect of a drug on a given
type of patient experiments to determine the effect of a fertilizer on a given type of corn, and outcomes from games
of poker. �

Definition 2.1.2. A sample space is the set of all possible individual outcomes to a given experiment (or game).
We denote the sample space by S.

Example 2.1.2. If the game is tossing a coin in which the possible outcomes on each coin are a head (H) or a tail
(T ), then S = {H,T}. If a possibility is that the coin lands on its edge (E), then S = {H,T,E}. If the game is
tossing two coin sin which the possible outcomes on each coin are H and T , then

S = {(H,H), (H,T ), (T,H), (T ;T )}, or
S = {(x, y) : x = H,T and y = H,T}, or
S = {{H,H}, {H,T}, {T, T}}.

Note that curly brackets {·, ·} denote an unordered pair, while parentheses (·, ·) denote an ordered pair. Whether or
not the points in the sample space are ordered depends on the questions asked about possible outcomes. If possible
outcomes are ordered, the sample space must be ordered. �

Example 2.1.3. A sample space need not be finite. Consider the following:

(a) A Geiger counter set up to record cosmic ray counts. The number of counts recorded may be any positive
integer or zero:

S = {0, 1, 2, 3, . . .} = Z+ ∪ {0} = Z∗.

(b) An experiment measuring the time (in nanoseconds) between two neighboring peaks on an electrocardiogram:

S = {x : 0 < x <∞} = R+.

Note that S is not unique. A sample space must contain all possible points, but it may also contain points or intervals
which could never occur. One may make a sample space as large as one pleases at the price of having a large number
of points (or intervals) in S which have zero probability associated with them.

Definition 2.1.3 (Population). A population is a set of objects from which we sample. We measure some (or
many) properties of the object drawn from the population.

If the random experiment is tossing a coin, then the population must be the set of all coins, the set of all coins of
the type being tossed, the set of all coins in a given box from which the tossed coin was drawn, or the set consisting
of the coin being tossed.

7
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Example 2.1.4. If the experiment is to determine the effect of anesthetics on patients, then the population might
be the set of all patients who have had one of the different types of this anesthetic. When a patient is drawn from
the population, we might measure the anesthetic type given, the age of the patient, and whether the operation was
a success or failure. The sample space is the set of elements of the type (x, y, z), where

x denotes the type of anesthetic given to a certain patient,

y denotes the age of the patient, and

z denotes success or failure.

If three types (a, b, c) of anesthetic are used, then the sample space S might be

S = {(x, y, z) : x = a, b, c; y = 1, . . . , 100; z = s, f}.

�

Example 2.1.5. If we want to measure the sugar content of oranges from a given grove, we could let the population
be a particular harvest from the grove. A number of oranges would be measured for sugar content. The sample
space in this case could be

S = {x : 0 ≤ x <∞}.

�

2.2 Events

Definition 2.2.1. An event is a subset of the sample space.

If upon performance of a random experiment the observed outcome is contained in some subset C of the sample
space S, we say that the event C has occurred.

Example 2.2.1. If S = {(H,H), (T, T ), (H,T ), (T,H)}, then the 24 = 16 possible events are the following:

A1 = S

A2 = ∅
A3 = {(H,H)}
A4 = {(T, T )}
A5 = {(H,H), (T, T )}

...

If a (H,H) occurs, the events A1, A3, A5 among others have occurred. �

Example 2.2.2. In Example 2.1.3(b), S = {x : 0 < x <∞} = R+. One might be interested in the events

A = {x : x > 3}, or
B = {x : 1 < x < 4}. �
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Example 2.2.3. In Example 2.1.4, S = {(x, y, z) : x = a, b, c; y = 1, . . . , 100; z = s, f}. One might be interested in
the events

A = {(x, y, z) : x = a; y = 1, . . . , 100; z = s}, or
B = {(x, y, z) : x = a; y = 1, . . . , 50; z = f}. �

2.3 Probability Measure

Let S be the sample space for a random experiment. Let C ⊂ S be an event. Assume that we have made n repeated
performances (trials) of a random experiment. We count the number f of times that the event C actually occurred
throughout the n trials. The ratio f/n is called the relative frequency of the event C in the n experiments.

Relative frequency is usually quite erratic for small values of n. As n increases, experience indicates that the relative
frequency tends to stabilize. That is,

lim
n→∞

f

n
= p.

We associate with the event C the number p. Thus, although we cannot predict the outcome of a random experiment,
we can, for a large value of n, predict (approximately) the relative frequency with which the outcome will be in C.

Example 2.3.1. The number of white balls drawn in 600 trials of the experiment of drawing a ball with replacement
from an urn containing 4 white and 2 red balls:

In trials Number of white Probability

numbered balls drawn of white balls

001 - 100 69 69
100 = 0.690

101 - 200 70 69+70
200 = 0.695

201 - 300 59 69+70+59
300 = 0.660

301 - 400 63 69+70+59+63
400 = 0.652

401 - 500 76 69+70+59+63+76
500 = 0.674

501 - 600 64 69+70+59+63+76+64
600 = 0.668

�

Let S denote the sample space. It is our purpose to define a set function P(C) so that if C ⊂ S is a probabilizable
event, then P(C) is the probability that the outcome of the random experiment is an element of C.

We need to keep the structure of each set C sufficiently simple to allow computation of P(C). We ensure this by our
definition of the domain of the set function P (·).

Let Ψ denote the domain of the set function P(·). If S is finite or countably infinite, then Ψ is the set of all subsets
of S. If S is uncountably infinite, then we require that Ψ is a non-empty set of subsets of S which is closed wrt
countable unions and complements (i.e., if A ∈ Ψ, then Ac = S/A ∈ Ψ).

We take P(C) to be the number about which the relative frequency f/n of the event C stabilizes (i.e., the limit).
This suggests some properties we want the function P(·) to possess:

1. Relative frequency is always ≥ 0.

2. Relative frequency of S is 1.

9
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3. If C1, C2, C3, . . . are disjoint subsets of S and elements of Ψ, then the relative frequency of the union is the sum
of the relative frequencies. This is called the additive property.

We can formalize these three properties mathematically:

Definition 2.3.1 (Probability Function). A probability function or probability measure is a set function P(·)
whose domain is Ψ. For every a ∈ Ψ, P(A) is called the probability of the event A. The following three axioms are
assumed:

Axiom 1: P(A) ≥ 0 ∀A ∈ Ψ.

Axiom 2: P(S) = 1.

Axiom 3: If A1, A2, A3, . . . ∈ Ψ are disjoint, then P

( ∞⋃
i=1

Ai

)
= P(A1 ∪A2 ∪A3 ∪ · · · ) =

∞∑
i=1

P(Ai).

Note that the range of P(·) is [0, 1].

Example 2.3.2. Suppose we toss a fair die. Then S = {1, 2, 3, 4, 5, 6}, and for probability, we have

x 1 2 3 4 5 6

P({x}) 1/6 1/6 1/6 1/6 1/6 1/6

Let A be the event that an even number is rolled:

A = {2, 4, 6} ⇒ P(A) = P({2} ∪ {4} ∪ {6}) = P({2}) + P({4}) + P({6}) =
3
6

=
1
2

�

We will henceforth assume that any event under discussion is an element of Ψ, the domain of P(·).

It can be shown that it is possible to define the probability over the empty set ∅:

Theorem 2.3.1. P(∅) = 0.

Proof:

• Since S ∩∅ = ∅, S and ∅ are disjoint. By axiom 3, P(S ∪∅) = P(S) + P(∅).

• Since S ∪∅ = S, P(S ∪∅) = P(S). By axiom 2, P(S) = 1.

• By the above two steps, 1 = P(S) = P(S ∪∅) = P(S) + P(∅) = 1 + P(∅) ⇒ P(∅) = 1− 1 = 0.

�
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Theorem 2.3.2. For any two events A and B, P(A ∪B) = P(A) + P(B)− P(AB).

Proof:

A B

Note that

• A ∪B = A ∪ (B/AB), where A ∩ (B/AB) = ∅.

• B = (B/AB) ∪AB, where (B/AB) ∩AB = ∅.

By axiom 3, P(A ∪B) = P(A ∪ (B/AB)) = P(A) + P(B/AB) and P(B) = P((B/AB) ∪AB) = P(B/AB) + P(AB).
Putting these two equations together proves the theorem.

�

Theorem 2.3.3. For any three sets A, B and C,

P(A ∪B ∪ C) = P(A) + P(B) + P(C)− P(AB)− P(BC)− P(AC) + P(ABC).

Proof:

A B

C

We see that A ∪ B ∪ C = (A/AC) ∪ (B/AB) ∪ (C/BC) ∪ ABC, where all four sets are mutually disjoint. Also,
A = (A/AC) ∪AC, etc. �

Theorem 2.3.4. For any two events A and B, P(A ∪B) ≤ P(A) + P(B).

Proof: By Theorem 2.3.2, P(A ∪ B) = P(A) + P(B) − P(AB). By axiom 1, P(AB) ≥ 0. The conclusion directly
follows. �
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Theorem 2.3.5. For any two events A and B, if A ⊂ B, then P(A) ≤ P(B).

Proof: We know that B = (B/AB) ∪ AB, where (B/AB) ∩ AB = ∅. Since A ⊂ B, then AB = A. By axiom 3,
P(B) = P(B/AB) + P(AB) = P(B/AB) + P(A). Since P(B/AB) ≥ 0 by axiom 1, the result follows. �

Theorem 2.3.6. For any event A, P(Ac) = 1− P(A).

Proof: A ∪Ac = S and A ∩Ac = ∅. Thus, 1 = P(S) = P(A ∪Ac) = P(A) + P(Ac), so that P(A) = 1− P(Ac). �

Example 2.3.3. As in Example 2.3.2, we again toss a fair die.

x 1 2 3 4 5 6

P({x}) 1/6 1/6 1/6 1/6 1/6 1/6

Then

A = {2, 4, 6} ⇒ P(A) =
3
6

=
1
2
,

B = {1, 2, 3} ⇒ P(B) =
3
6

=
1
2
,

AB = {2} ⇒ P(AB) =
1
6
,

A ∪B = {1, 2, 3, 4, 6} ⇒ P(A ∪B) =
5
6
,

(AB)c = {1, 3, 4, 5, 6} ⇒ P((AB)c) =
5
6
. �

2.4 Combinatorics - Counting Techniques

Definition 2.4.1. An arrangement of n symbols in a definite order is called a permutation of those n symbols.

For example, 2, 3, 1, 4 is a permutation of the symbols 1, 2, 3, 4. The number of permutations of n things taken n at
a time is

n! = n · (n− 1) · (n− 2) · · · 2 · 1.

Note that we define 0! = 1. The number of permutations of n items taken r at a time is

nPr =
n!

(n− r)!
= n(n− 1)(n− 2) · · · (n− r + 1).

Example 2.4.1. The number of permutations of a, b, c taken three at a time is 3! = 6:

abc bac cab acb bca cba.

The number of permutations of a, b, c taken two at a time is 3P2 = 6:

ab ba ca ac bc cb.

The number of permutations of a, b, c and d taken two at a time is 4P2 = 12:

ab ba ca da ac bc cb db ad bd cd dc. �
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Example 2.4.2. If repeats are possible, the number of ways that the symbols a and b can be arranged in a definite
order of 2 symbols is 2 · 2 = 4:

aa ba ab bb.

The three symbols a, b and c can be arranged in 3 · 3 · 3 = 27 ways if repeats are allowed. �

Example 2.4.3. Consider an urn with 1 white and 2 black balls. Number the white ball #1 and the black balls #2
and #3. Draw two balls from an urn without replacement. Record the outcome by (x1, x2), where x1, x2 ∈ {1, 2, 3}
but x1 6= x2. (xi denotes the result of the ith draw):

S = {(x1, x2) : x1, x2 ∈ {1, 2, 3}; x1 6= x2}.

How many possible outcomes are there? That is, what is the size of the sample space?

3P2 = 3 · 2 =
3!

(3− 2)!
= 6, ⇒

(1, 2), (2, 1), (3, 1),

(1, 3), (2, 3) (3, 2).
�

In general, the number of r-tuples that can be formed from n symbols when we don’t repeat is nPr. If repetition is
allowed, then the number is nr. In Example 2.4.3, if the two balls are drawn from the urn with replacement, then
the sample space becomes

S = {(x1, x2) : x1, x2 ∈ {1, 2, 3}}.

and the number of possible outcomes is

3 · 3 = 32 = nr = 9.

Definition 2.4.2. The number of subsets of size r that can be formed from a set of n elements is called a combination
of n elements taken r at a time, denoted by (

n

r

)
=

n!
(n− r)! r!

= nPr
r!

.

Example 2.4.4. Consider the set {1, 2, 3}. The number of combinations on this set taken two at a time is(
3
2

)
=

3!
2!1!

= 3P2

2!
= 3, ⇒ {1, 2}, {1, 3}, {2, 3}.

As illustrated in Example 2.4.3, the number of permutations on this set taken two at a time is

3P2 = 3 · 2 =
3!

(3− 2)!
= 6, ⇒

(1, 2), (2, 1), (3, 1),

(1, 3), (2, 3) (3, 2).
�

Example 2.4.5. The number of different bridge hands (13 cards) that a player in a bridge game can attain is(
52
13

)
=

52!
39!13!

= 635, 013, 559, 600 ≈ 6.35× 1011.

The number of ways in which a bridge deck may be dealt into four hands for four distinct players is(
52
13

)(
39
13

)(
26
13

)(
13
13

)
=

52!
��39!13!

· ��39!
��26!13!

· ��26!
��13!13!

· ��13!
0!13!

=
52!

13!13!13!13!
≈ 5.36× 1028. �
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The answer to the last part of Example 2.4.5 has a special notation:(
n

r1, r2, . . . , rk

)
=

n!
r1! r2! · · · rk!

, where r1 + · · ·+ rk = n.

Therefore, we could have denoted the answer to the last part of that example as(
52

13, 13, 13, 13

)
=

52!
13!13!13!13!

≈ 5.36× 1028.

Example 2.4.6. Five probability students meet at a party. How many handshakes are exchanged if each student
shakes hands with every other student once and only once? To determine this, we simply calculate the total
combinations of two people (the two people shaking hands) out of a total of five:(

5
2

)
=

5!
2!3!

=
5 · 4
2 · 1

= 10. �

Example 2.4.7. In how many ways can a probability student answer 8 questions on a true-false exam if she makes
half the questions true and half the questions false? Here we take 8 questions and choose 4 of them to be false:(

8
4

)
=

8!
4!4!

=
8 · 7 · 6 · 5
4 · 3 · 2 · 1

= 70. �

2.5 Defining P when S is Finite

To define P over a finite sample space S, it is necessary to know P for any subset of S. It is sufficient to define P
over the single element events. That is, if S = {x1, . . . , xn} and if we know P(x1), . . . , P(xn), then we can compute
P(·) for any subset of S.

Example 2.5.1. Suppose one is drawing a sample of size 2 from an urn containing red and white balls:

S = {(W,W ), (W,R), (R,W ), (R,R)}.

Suppose we define the following.

x (W,W ) (W,R) (R,W ) (R,R)

P({x}) 6/15 4/15 4/15 1/15

Let E be the event that the first ball is white:

E = {(W,W ), (W,R)} ⇒ P(E) = P ({(W,W ), (W,R)})
= P ({(W,W )} ∪ {(W,R)})
= P ({(W,W )}) + P ({(W,R)})

=
6
15

+
4
15

=
2
3
.

Note that the points (single-element events) in S are not equally likely. �
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Now consider a finite sample space, where each point in the sample space is assumed to be equally likely:

S = {x1, x2, . . . , xn} ⇒ P({xi}) =
1
n

for i ∈ {1, 2, . . . , n}.

In this special case, P(A) = Size of A
Size of S . Therefore, if there are m points in A, then

P(A) =
m∑
i=1

1
n

=
m

n
.

Example 2.5.2. Consider the game of tossing 2 dice, where

S = {(x, y) : x, y ∈ {1, 2, 3, 4, 5, 6}}.

If it is assumed that each point in S is equally likely, then

P({(x, y)}) =
1

Size of S
∀(x, y) ∈ S.

Let A be the set of points such that x+ y = 5:

A = {(1, 4), (4, 1), (2, 3), (3, 2)} ⇒ P(A) =
Size of A
Size of S

=
4
62

=
4
36

=
1
9
.

Let S = {2, 3, 4, 5, . . . , 11, 12}, where we are now only interested in the events concerning the sum x + y appearing
on the dice. The points in S are not equally likely.

x 2 3 4 5 6 7 8 9 10 11 12

P({x}) 1
36

2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36

If the event A = {5}, then P(A) = 4
36 = 1

9 . �

Example 2.5.3. Find the probability that the thirteenth day of a randomly chosen month (each month equally
likely to be chosen) is Friday:

S = {Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday}.

If we assume the points in S are equally likely, then P(Friday) = 1
7 . Checking the assumption of equally likely points:

A calendar has a period of 400 years. Every fourth year is a leap year except for years such as 1700, 1800, and 1900,
which are not multiples of 400. In 400 years, there are 4800 dates (between the years 1600 and 2000) which are the
thirteenth of the month:

x Sunday Monday Tuesday Wednesday Thursday Friday Saturday

P({x}) 687
4800

685
4800

685
4800

687
4800

684
4800

688
4800

684
4800

�
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Example 2.5.4 (Urn Problems). An urn contains 20 balls:

10 red, numbered 1-10,
4 blue, numbered 11-14,
6 green, numbered 15-20.

(a) A sample of size 1 is taken from the urn.

S = {1, 2, . . . , 20} ⇒ Size of S is 20.

Assuming equally likely points in S, let A be the event that the ball drawn is red.

P(A) = P({1, 2, . . . , 10}) =
Size of A
Size of S

=
10
20

=
1
2
.

(b) A sample of size 2 is drawn with replacement from the urn.

S = {(x, y) : x, y ∈ {1, 2, . . . , 20}} ⇒ Size of S is 20× 20 = 400.

Let B be the event that the first ball is red and the second is green.

B = {(x, y) : x ∈ {1, 2, . . . , 10}, y ∈ {15, 16, . . . , 20}} ⇒ Size of B is 10× 6 = 60.

⇒ P(B) =
Size of B
Size of S

=
60
400

=
3
20
.

Let C be the event that the one ball is red and one ball is green.

C = {(x, y) : x ∈ {1, . . . , 10}, y ∈ {15, . . . , 20} or x ∈ {15, . . . , 20}, y ∈ {1, . . . , 10}}
⇒ Size of C is 10× 6 + 6× 10 = 120.

⇒ P(C) =
Size of C
Size of S

=
120
400

=
3
10
.

Let D be the event that both balls are red.

D = {(x, y) : x, y ∈ {1, 2, . . . , 10}} ⇒ Size of D is 10× 10 = 100.

⇒ P(D) =
Size of D
Size of S

=
100
400

=
1
4
.

(c) A sample of size 2 is drawn without replacement from the urn.

S = {(x, y) : x, y ∈ {1, 2, . . . , 20}, x 6= y} ⇒ Size of S is 20× 19 = 380.

Assuming equally likely points in S, let E be the event that the first ball drawn is red and the second one is
green.

E = {(x, y) : x ∈ {1, 2, . . . , 10}, y ∈ {15, 16, . . . , 20}} ⇒ Size of E is 10× 6 = 60.

⇒ P(E) =
Size of E
Size of S

=
60
380

> P(B) =
60
400

.

Note that if there are 19 balls in the urn and 6 of them are green, then the probability of a green ball is 6
19 >

6
20 .

Now let F be the event that both balls drawn are red.

F = {(x, y) : x, y ∈ {1, 2, . . . , 10}, x 6= y} ⇒ Size of F is 10× 9 = 90.

⇒ P(F ) =
Size of F
Size of S

=
90
380

< P(D) =
100
400

. �
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When S is countably infinite, it is obvious that the points in S cannot be equally likely. To define P(·) in this case,
it is sufficient to define P(·) over the single member equivalents of S.

Definition 2.5.1 (Probability Mass/Density Function). For finite or countably infinite sample spaces, the
probability function defined over single member events of S is written as a point function and is called the probability
mass function (pmf) or probability density function (pdf):

pmf: p(x) = P({x}),
pdf: f(x) = P({x}).

Example 2.5.5. Toss a fair 6-sided die:

p(x) = P({x}) =

{
1
6 x ∈ {1, 2, 3, 4, 5, 6}
0 otherwise

.

x

p(x)

1 2 3 4 5 6

1
6

�

Example 2.5.6. Toss 2 fair dice as in Example 2.5.2. Let the outcome by the sum x+ y of the values of their faces:

p(x) =


x−1
36 x ∈ {2, 3, 4, 5, 6, 7}

13−x
36 x ∈ {8, 9, 10, 11, 12}

0 otherwise
.

x

p(x)

1

1
36

6
36

2 3 4 5 6 7 8 9 10 11 12 �
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Example 2.5.7. Toss a coin, and let p be the probability of getting a head. Toss a coin over and over again until a
head appears and stop. We are interested in the number of tosses, x, necessary to obtain a head for the first time.

S = {1, 2, 3, . . .} = Z+.

It can be shown that

p(1) = p

p(2) = (1− p)p
p(3) = (1− p)2p

...

p(x) = (1− p)x−1p.

Therefore, we write

p(x) =

{
(1− p)x−1p x ∈ Z+

0 otherwise
.

If p = 1
2 , then

p(x) =

{(
1
2

)x
x ∈ Z+

0 otherwise
.

x

p(x)

1
2

1 2 3 4 5 6 7 8 �
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2 - Fundamental Definitions and Axioms

If S has n members and each is equally likely to occur, then we say that P(·) is distributed uniformly over S, and
the pmf is

p(x) =

{
1
n x ∈ S
0 otherwise

.

Example 2.5.8. If S = {−1, 0, 3, 4, 6} and P(·) is distributed uniformly over S, then

p(x) =

{
1
5 x ∈ {−1, 0, 3, 4, 6}
0 otherwise

.

x

p(x)

−1 0 3 4 61 2 5 7

1
5

�

2.6 Defining P when S is (Uncountably) Infinite

We will consider cases where S = R. We will restrict our attention to those sample spaces S and set of events Ψ
which we can define probability P for any event A ∈ Ψ in the following way:

If there exists a real-valued function f(·) such that

P(A) =
∫
A

f(x) dx ∀A ∈ Ψ, (2.6.1)

1 = P(S) =
∫
S

f(x) dx, and (2.6.2)

f(x) ≥ 0 ∀x ∈ S ⊂ R, (2.6.3)

then f(·) is called a probability density function. Note that

P({xi}) =
∫ xi

xi

f(x) dx = 0.

However, P(·) is still a set function.

x

f(x)

A

P(A) :
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Example 2.6.1. Assume that the subway station at T-Centralen has trains which depart every ten minutes for
Gamla Stan station. Passengers arriving at T-Centralen don’t know the exact schedule – only that there is a
ten-minute interval between trains. The waiting time of a passenger arriving at T-Centralen is t, where t ∈ [0, 10]:

S = {t : 0 ≤ t ≤ 10}.

Experience has shown that for a, b ∈ [0, 10],

P({t : a ≤ t ≤ b}) = k(b− a) =
∫ b

a

k dx.

By (2.6.2),

P({t : 0 ≤ t ≤ 10}) = P(S) = 1 = k(10− 0) = 10k ⇒ k =
1
10
.

Therefore,

f(x) =

{
1
10 x ∈ [0, 10]
0 otherwise

.

x

f(x)

0 5 10

1
10

so that

P({t : a ≤ t ≤ b}) =
∫ b

a

1
10

dx =
b− a

10
for a, b ∈ [0, 10]. �

Example 2.6.2. Let S = R, and

f(x) =

{
2x x ∈ [0, 1]
0 otherwise

.

x

f(x)

0 1

2

Note that ∫ ∞
−∞

f(x) dx =
∫ 1

0

2x dx =
[
x2
]1
0

= 1.

Let A be the event that the observed value is less than 1
2 . Thus,

P(A) =
∫ 1

2

−∞
f(x) dx =

∫ 1
2

−∞
2x dx =

[
x2
] 1

2

0
=

1
4
.

and

P(observed value is ≥ 1
2 ) = 1− 1

4
=

3
4
, P({ 1

2}) =
∫ 1

2

1
2

2x dx = 0. �
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Example 2.6.3. Consider an experiment which consists of observing the total time a light bulb will burn from the
moment it is first put into service. Suppose P(·) is determined by the pdf

f(x) =

{
1

1000e
−x/1000 x ≥ 0

0 otherwise
.

x

f(x)

1
1000

1000

Let E be the event that the bulb burns between 100 and 1000 hours. Let F be the event that the bulb burns more
than 1000 hours. That is,

E = {x : 100 ≤ x ≤ 1000}, F = {x : x > 1000}.

Thus,

P(E) =
∫ 1000

100

f(x) dx =
∫ 1000

100

1
1000

e−x/1000 dx =
[
−e−x/1000

]1000

100
= −e−1 + e−

1
10 ≈ 0.537,

P(F ) =
∫ ∞

1000

f(x) dx =
∫ ∞

1000

1
1000

e−x/1000 dx =
[
−e−x/1000

]∞
1000

= 0 + e−1 ≈ 0.368.

Furthermore, note that P({x : x < 100}) = 1− P(E)− P(F ) ≈ 1− 0.537− 0.368 = 0.095 and that∫ ∞
−∞

f(x) dx =
∫ ∞

0

1
1000

e−x/1000 dx =
[
−e−x/1000

]∞
0

= 0 + 1 = 1,

thus proving that f(x) is a valid pmf (i.e., it integrates to one). �

2.7 Random Variables

The set of all outcomes of a random1 experiment is the sample space for the random experiment. Examples of
random experiments include the following:

• Measuring the time a passenger waits until he catches a train.

• Measuring the time to failure of a piece of equipment.

• Observing the sum when two dice are tossed.

For these examples, we could let

• T denote the time a passenger waits,

• X denote the time to failure, and

• Y denote the sum of the two dice.

1The adjective (or adverb) random is used in probability in many different applications, such as random variable, random phenomenon,
random experiment, and picking randomly. In all cases, this just means that the outcome is not pre-determined, and relies on some law
of chance.
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Definition 2.7.1 (Random Variable). A random variable (r.v.) X is a point function from the sample space S
into the set of real numbers R. If B is a probabilizable subset of R, then P(X ∈ B) = PX(B) = P({ω : X(ω) ∈ B}).
We let A = X−1(B) be the inverse image of B in S.

ω X(ω)

A B = X(A)

X(S)

R

S Map points into points,
map events into events.

We denote random variables by upper case letters such as X, Y , Z or T . We denote specific values which the random
variables may take by lower case letters, such as x, y, z or t.

Example 2.7.1. Suppose S = {1, 2, 3, 4, 5, 6} and X is the identity function X(ω) = ω ∀ω ∈ S. Thus, for example,
X(1) = 1, X(2) = 2, etc. If P(x) = 1

6 for each value x of S, then P(X = x) = 1
6 ∀x. �

Example 2.7.2. If S = {H,T}, then we could let X(H) = 1, X(T ) = 0. By doing this, we are mapping the sample
space {H,T} to the subset of the real numbers {0, 1}.

H

T

1

0

P({H}) = P(X = 1),
P({T}) = P(X = 0).

�

Example 2.7.3. Let S = R, and let E be the event that a light bulb burns between 100 and 1000 hours. Letting
X(ω) = ω ∀ω ∈ S, we have P(E) = P({x : 100 < x < 1000}] = P(100 < X < 1000). �

We will learn two types of random variables: discrete and continuous.

Definition 2.7.2. A random variable X is discrete iff its range of values (values of x where P(X = x) > 0) is a
non-empty finite or countably infinite set of real numbers.

Example 2.7.4. The random variables in Examples 2.7.1 (die) and 2.7.2 (coin) are discrete. The random variable
in Example 2.7.3 (light bulb) is not discrete, since the set of x where P(X = x) > 0 is the empty set ∅. �

If S is finite or countably infinite and X(x) = x ∀x ∈ S, then X is discrete, such as in Example 2.7.1. However,
discrete random variables exist in other cases, such as in Examples 2.7.2 and 2.7.5 below.
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Example 2.7.5.

a. Let S = Z+, the set of natural numbers. Define X(x) =

{
−x if x = 2n+ 1 for some n ∈ Z+,

x/2 if x = 2n for some n ∈ Z+
. Then X is a

discrete random variable.

b. If we define X(x) =

{
0 if x = 2n+ 1 for some n ∈ Z+,

1 if x = 2n for some n ∈ Z+
, then X is a discrete random variable.

c. Let S = R+, and define X(x) =

{
0 x ∈ (0, 100)
1 x ≥ 100

. Then X is a discrete random variable.

�

Definition 2.7.3. A random variable X is continuous iff its range is an uncountably infinite set of real numbers.
For example, ∀x ∈ R, P(X = x) = 0.

We will restrict our attention to those continuous r.v.’s where P(·) is defined by a pdf fX(x). These random variables
are correctly called absolutely continuous random variables.

If X is a continuous r.v., then P(X = x) = 0 ∀x and ∀A ∈ Ψ, P(A) = P(X ∈ A).

Example 2.7.6. Let S = {x : 0 ≤ x ≤ 10} and X(x) = x ∀x ∈ S. Let fX(x) = 1
10 for 0 ≤ x ≤ 10. then

P(a < x < b) =
∫ b

a

1
10

dx for 0 < a < b < 10. �

Example 2.7.7. Let S = R+, where S is a sample space for a random experiment of life length of light bulbs. Let

P(A) =
∫
A

1
100

e−x/100 dx ∀A ∈ Ψ. �

Example 2.7.8. Let S = {H,T} and P({H}) = P({T}) = 1
2 . If X(H) = 1 and X(T ) = 0, then for this discrete

random variable.

p(1) = P({X(H) = 1}) = P({H}) = P(X = 1),
p(0) = P({X(T ) = 0}) = P({T}) = P(X = 0).

�
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Example 2.7.9. Further examples of pmf’s and pdf’s include the following:

a) fX(x) =

{
1
10 x ∈ [0, 10]
0 otherwise

.
x

fX(x)

0 5 10

1
10

b) fX(x) =

{
1

1000e
−x/1000 x ≥ 0

0 otherwise
.

x

fX(x)

1
1000

1000

c) pX(x) =

{
1
2 x ∈ {0, 1}
0 otherwise

.
x

pX(x)

0 1

1
2

d) pX(x) =

{
1
6 x ∈ {1, 2, 3, 4, 5, 6}
0 otherwise

.

x

pX(x)

1 2 3 4 5 6

1
6

e) pX(x) =


1
2 x = 2
3
8 x = 6
1
8 x = 8
0 otherwise

.

x

pX(x)

2 4 6 8

1
2

�
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2.8 Distribution Function

It can be shown that for any random variable, there exists a function called a distribution function which suffices to
determine the probability measure P(·), in that P(·) can be reconstructed from the distribution function.

Definition 2.8.1 (Distribution Function). For a random variable X, the distribution function FX(·) is a point
function from R to the interval [0, 1] defined by

FX(x) = P({y : y ≤ x}) = P(X ≤ x).

If the probability is specified by a pmf pX(·) (for discrete r.v.’s), then FX(x) =
∑
y≤x

pX(y).

If the probability is specified by a pdf fX(·) (for continuous r.v.’s), then FX(x) =
∫ x

−∞
fX(y) dy.

Example 2.8.1. If X is a discrete r.v. with S = {1, 2, 3, 4, 5, 6} and

pX(x) =

{
1
6 x ∈ S
0 otherwise

, then FX(x) =


0 x < 1
1
6 1 ≤ x < 2 4

6 4 ≤ x < 5
2
6 2 ≤ x < 3 5

6 5 ≤ x < 6
3
6 3 ≤ x < 4 1 6 ≤ x

.

Graphically, we have

x

pX(x)

1 2 3 4 5 6

1
6

x

FX(x)

1
6

1

2
6

2

3
6

3

4
6

4

5
6

5

1

6

Note that the graph of FX(x) contains a line from (1, 0) to (−∞, 0) (difficult to see on a black and white copy). �
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Example 2.8.2. If X is a discrete r.v. with S = {2, 6, 8} and

pX(x) =


1
2 x = 2
3
8 x = 6
1
8 x = 8
0 otherwise

, then FX(x) =


0 x < 2
1
2 2 ≤ x < 6
7
8 6 ≤ x < 8
1 8 ≤ x

.

Graphically, we have

x

pX(x)

2 4 6 8

1
2

x

FX(x)

2 4 6 8

1

7
8

1
2

Here the graph of FX(x) contains a line from (2, 0) to (−∞, 0) (again, difficult to see on a black and white copy).�
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Example 2.8.3. Consider again the example of the life length of light bulbs:

fX(x) =

{
1

1000e
−x/1000 x ≥ 0

0 otherwise

in which case, for x ≥ 0,

FX(x) = P(X ≤ x) =
∫ x

0

1
1000

e−t/1000 dt =
[
−e−t/1000

]x
0

= 1− e−x/1000.

Graphically, we have

x

fX(x)

1
1000

1000

x

FX(x)

1

1000

The graph of FX(x) contains a line from (0, 0) to (−∞, 0) (again, difficult to see on a black and white copy). �

Generally, remember that FX(·) is defined on the entire real number line R. Furthermore, there is a 1-1 correspondence
among

PX(·) ⇔ FX(·) ⇔ pX(·)

for discrete r.v.’s and among

PX(·) ⇔ FX(·) ⇔ fX(·)

for continuous r.v.’s.
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2.9 n-Dimensional Discrete Random Variables

In this case the sample space is a discrete set of points in n-dimensional space. Let S1, S2, . . . , Sn be discrete
one-dimensional sample spaces. then the n-dimensional sample space might be

S = S1 × S2 × · · · × Sn.

We write the n-dimensional random variable as X = (X1, X2, . . . , Xn).

First consider a two-dimensional discrete random variable

S = S1 × S2, X = (X1, X2).

The joint pmf for (X1, X2) is denoted by

pX1,X2(x1, x2) = PX1,X2({x1, x2}) = PX1,X2(X1 = x1, X2 = x2).

Example 2.9.1. Toss two dice and assume equally likely points in S.

S1 = {1, 2, 3, 4, 5, 6}, S2 = {1, 2, 3, 4, 5, 6}, and S = S1 × S2 :

Thus,

pX1,X2(2, 3) = PX1,X2({2, 3}) = PX1,X2(X1 = 2, X2 = 3) =
1
36
,

pX1,X2(0, 3) = PX1,X2({0, 3}) = PX1,X2(X1 = 0, X2 = 3) = 0. �

Definition 2.9.1 (Marginal pmf). For the two-dimensional case, the marginal probability mass function for X1 s
given by

pX1(x1) =
∑

all x2

pX1,X2(x1, x2).

Likewise, the marginal pmf for X2 is given by

pX2(x2) =
∑

all x1

pX1,X2(x1, x2).

Definition 2.9.2 (Joint Distribution Function). For the two-dimensional case, the joint distribution function s
given by

FX1,X2(x1, x2) =
∑
y2≤x2

∑
y1≤x1

pX1,X2(x1, x2).
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Example 2.9.2. Let S1 = {1, 2, 3, 4, 5}, S2 = {18, 19, 20, 21}, S = S1 × S2, and let the joint and marginal
probabilities be given by

x1 \ x2 18 19 20 21 pX1(x1)

1 0.00 0.02 0.05 0.00 0.07

2 0.01 0.02 0.06 0.00 0.09

3 0.07 0.14 0.18 0.06 0.45

4 0.06 0.08 0.09 0.02 0.25

5 0.03 0.07 0.03 0.01 0.14

pX2(x2) 0.17 0.33 0.41 0.09 1.00

Thus,

pX1,X2(4, 19) = PX1,X2(X1 = 4, X2 = 19) = 0.08,

and for marginal pmf’s,

pX1(2) =
21∑

x2=18

pX1,X2(2, x2)

= pX1,X2(2, 18) + pX1,X2(2, 19) + pX1,X2(2, 20) + pX1,X2(2, 21)
= 0.01 + 0.02 + 0.06 + 0.00 from the table

= 0.09.

pX1(3) =
21∑

x2=18

pX1,X2(3, x2)

= pX1,X2(3, 18) + pX1,X2(3, 19) + pX1,X2(3, 20) + pX1,X2(3, 21)
= 0.07 + 0.14 + 0.18 + 0.06 from the table

= 0.45.

pX2(19) =
5∑

x1=1

pX1,X2(x1, 19)

= pX1,X2(1, 19) + pX1,X2(2, 19) + pX1,X2(3, 19) + pX1,X2(4, 19) + pX1,X2(5, 19)
= 0.02 + 0.02 + 0.14 + 0.08 + 0.07 from the table

= 0.33.

pX2(20) =
5∑

x1=1

pX1,X2(x1, 20)

= pX1,X2(1, 20) + pX1,X2(2, 20) + pX1,X2(3, 20) + pX1,X2(4, 20) + pX1,X2(5, 20)
= 0.05 + 0.06 + 0.18 + 0.09 + 0.03 from the table

= 0.41.
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x1 \ x2 18 19 20 21 pX1(x1)

1 0.00 0.02 0.05 0.00 0.07

2 0.01 0.02 0.06 0.00 0.09

3 0.07 0.14 0.18 0.06 0.45

4 0.06 0.08 0.09 0.02 0.25

5 0.03 0.07 0.03 0.01 0.14

pX2(x2) 0.17 0.33 0.41 0.09 1.00

For the joint distribution function,

FX1,X2(2, 19) =
19∑

x2=18

2∑
x1=1

pX1,X2(x1, x2)

= pX1,X2(1, 18) + pX1,X2(2, 18) + pX1,X2(1, 19) + pX1,X2(2, 19)
= 0.00 + 0.01 + 0.02 + 0.02
= 0.05.

Furthermore, note that

PX1,X2(X1 = 3 and 18 ≤ X2 ≤ 21) = pX1(3) = 0.45,
PX1,X2(X1 = 3 and 18 < X2 < 21) = pX1,X2(3, 19) + pX1,X2(3, 20) = 0.32.

A graph of our joint probabilities looks like this:

x1

pX1,X2(x1, x2)

x2

0.2

18 19 20 21

1

2

3

4

5

�
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Example 2.9.3 (Drawing from an urn without replacement). Suppose we draw two balls without
replacement from an urn containing 10 balls:{

5 red balls: # 1, 2, 3, 4, 5

5 white balls: # 6, 7, 8, 9, 10

}

Assume equally likely points in the sample space:

S = {(x1, x2) : x1 = 1, 2, . . . , 10; x2 = 1, 2, . . . , 10; x1 6= x2}.

Let the random variable Xi denote the outcome of the ith draw:

pX1,X2(x1, x2) =
1

10 · 9
=

1
90

for (x1, x2) ∈ S.

x1 \ x2 1 2 3 · · · 10 pX2(x2)

1 0 1
90

1
90 · · · 1

90
9
90

2 1
90 0 1

90 · · · 1
90

9
90

3 1
90

1
90 0 · · · 1

90
9
90

...
...

...
... 0

...
...

10 1
90

1
90

1
90 · · · 0 9

90

pX1(x1) 9
90

9
90

9
90 · · · 9

90
9
90

As shown in the above table, our marginal pmf’s for X1 and X2 are

pX1(x1) =
10∑

x2=1

pX1,X2(x1, x2) =
9
90

=
1
10

for x1 ∈ {1, 2, . . . , 10},

pX2(x2) =
10∑

x1=1

pX1,X2(x1, x2) =
9
90

=
1
10

for x2 ∈ {1, 2, . . . , 10}.

A couple points to ponder:

• We know from above that pX2(5) = P(X2 = 5) = 9
90 . Another way to think about it is that

P(X2 = 5) = P({(x1, 5) : x1 = 1, . . . 10; x1 6= 5})

=
10∑

x1=1
x1 6=5

P({(x1, 5)})

=
9
90
.

• Note that pX1,X2(x1, x2) 6= PX1(x1)pX2(x2).

�
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For the n-dimensional case, the joint pmf is defined by

pX1,X2,...,Xn(x1, . . . , xn) = pX(x1, . . . , xn) = PX({(x1, . . . , xn)}).

The joint distribution function is defined as

FX(x1, . . . , xn) =
∑
yn≤xn

∑
yn−1≤xn−1

· · ·
∑
y1≤x1

pX(x1, . . . , xn).

Example 2.9.4. Suppose we toss three unbiased dice:

S = S1 × S2 × S3 where Si = {1, 2, 3, 4, 5, 6}
= {(x1, x2, x3) : xi = 1, 2, 3, 4, 5, 6}.

We define

pX1,X2,X3(x1, x2, x3) =
1

6 · 6 · 6
=

1
216

∀(x1, x2, x3) ∈ S.

Thus,

FX(1, 2, 4) =
4∑

x3=1

2∑
x2=1

1∑
x1=1

pX(x1, x2, x3)

=
4∑

x3=1

2∑
x2=1

1∑
x1=1

1
216

=
4 · 2 · 1

216

=
8

216
≈ 3.70%. �

2.10 n-Dimensional Continuous Random Variables

In this case, the sample space is Rn = R× R× · · · × R. The random variable is denoted by (x1, . . . , xn). The joint
probability density function is denoted by fX(x1, . . . , xn), and the joint distribution function is given by

FX(x1, . . . , xn) =
∫ xn

−∞

∫ xn−1

−∞
· · ·
∫ x1

−∞
fX(y1, . . . , yn) dy1 · · · dyn−1dyn

= PX(X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn).

For the two-dimensional case, the marginal densities are

fX1(x1) =
∫ ∞
−∞

fX1,X2(x1, x2) dx2,

fX2(x2) =
∫ ∞
−∞

fX1,X2(x1, x2) dx1.
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Example 2.10.1. Suppose at two points in a room, one measures the intensity of sound caused by general back-
ground noise. Let X1 and X2 be the r.v.’s representing the intensity of sound at two points:

X1 is the intensity of sound measured at a point on the floor,
X2 is the intensity of sound measured at a point on the ceiling.

Assume that the joint pdf for X1 and X2 is given by

fX1,X2(x1, x2) = x1x2 exp
(
−x

2
1 + x2

2

2

)
, x1, x2 > 0.

x2

fX1,X2(x1, x2)

x1

0.25

1

2

3

4

1 2 3 4

Then the marginal distributions for X1 and X2 are given by

fX1(x1) =
∫ ∞

0

x1x2 exp
(
−x

2
1 + x2

2

2

)
dx2

= x1

[
− exp

(
−x

2
1 + x2

2

2

)]x2=∞

x2=0

= x1e
−x2

1/2, x1 > 0.

fX2(x2) = x2e
−x2

2/2, x2 > 0. by symmetry

Note that in this case, fX(x1, x2) = fX1(x1)fX2(x2).
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The distribution function for x1, x2 > 0 is

FX(x1, x2) =
∫ x2

−∞

∫ x1

−∞
fX(t1, t2) dt1dt2

=
∫ x2

0

∫ x1

0

t1t2 exp
(
− t

2
1 + t22

2

)
dt1dt2

=
∫ x2

0

[∫ x1

0

t1e
−t21/2 dt1

]
t2e
−t22/2dt2 since t2e

−t22/2 is a constant with respect to t1

=
∫ x1

0

t1e
−t21/2 dt1

∫ x2

0

t2e
−t22/2 dt2 since

∫ x1

0
t1e
−t21/2

dt1 is a constant with respect to t2

=
(

1− e−x
2
1/2
)(

1− e−x
2
2/2
)

For example,

FX(1, 1) = P(X1 ≤ 1, X2 ≤ 1)

=
(

1− e−1/2
)(

1− e−1/2
)

≈ 15.48%. �
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3 Dependent and Independent Events

3.1 Conditional Probability

We want to know the probability of some event A given (having the information) that some event B has occurred.

Definition 3.1.1. If P(B) > 0, then then conditional probability of A given B, denoted P(A|B), is given by

P(A|B) =
P(AB)
P(B)

In words, P(A|B) represents the re-evaluation of the probability of A in light of the information that B has occurred.
It reflects the fact that our sample space has shrunk from S to B.

A B
S

Example 3.1.1. Consider a family with two children. Assume that each child is equally likely to be a boy or a girl.

Let A be the event that the first child is a boy,
Let B be the event that the second child is a boy.

Then A∪B is the event that at least one child is a boy, and A∩B is the event that both children are boys. Let the
r.v. X and Y denote the sex of the first and second child, respectively. Then our sample space becomes

S

(0,0)

(0,1)

(1,0)

(1,1)

S = {(x, y) : x = 0, 1; y = 0, 1}:

P(A) = P(B) = 1
2 , P(AB) = 1

4 and P(A ∪B) = 3
4 , so

P(A|B) =
P(AB)
P(B)

=
1/4
1/2

=
1
2
,

P(AB|B) =
P(ABB)

P(B)
=

P(AB)
P(B)

=
1/4
1/2

=
1
2
,

P(AB|A ∪B) =
P(AB ∩ (A ∪B))

P(A ∪B)
=

P(AB)
P(A ∪B)

=
1/4
3/4

=
1
3
.
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Note that P(A|B) = P(A) and that

P(AB) = P(A|B)P(B) = P(B|A)P(A). (3.1.1)
�

In fact, Equation (3.1.1) can be generalized.

Theorem 3.1.1 (Multiplication Rule). Let A1, A2, . . . , An be defined events on the sample space S. Then

P(A1A2A3 · · ·An) = P(A1)P(A2|A1)P(A3|A1A2) · · ·P(An|A1A2 · · ·An−1). (3.1.2)

This is called the multiplication rule, and using it to solve a problem is called conditioning.

Proof: We simply apply the definition of conditional probability multiple times:

P(A1A2A3 · · ·An) = P(A1) · P(A1A2)
P(A1)

· P(A1A2A3)
P(A1A2)

· · · P(A1A2 · · ·An)
P(A1A2 · · ·An−1)

= P(A1)P(A2|A1)P(A3|A1A2) · · ·P(An|A1A2 · · ·An−1).

�

Theorem 3.1.2. Let S be a sample space and P(·) be the probability function defined over the set of events Ψ.
Then for any B ∈ Ψ, if P(B) > 0, then P(·|B) is a probability function. That is,

(a) P(A|B) ≥ 0 ∀A ∈ Ψ,

(b) P(S|B) = 1, and

(c) If A1, A2, . . . , An are disjoint sets (events), then P

(
n⋃
k=1

Ak

∣∣∣∣∣B
)

=
n∑
k=1

P(Ak|B).

Proof:

(a) P(A|B) =
P(AB)
P(B)

≥ 0, since P(·) is a probability function.

(b) P(S|B) =
P(SB)
P(B)

=
P(B)
P(B)

= 1.

(c) P

(
n⋃
k=1

Ak

∣∣∣∣∣B
)

=
P ([∪kAk] ∩B)

P(B)
=

P (∪kAkB)
P(B)

=︸︷︷︸
∗

n∑
k=1

P(AkB)
P(B)

=
n∑
k=1

P(Ak|B),

where step ∗ is true because the sets {AkB}k are disjoint.

A1 A2 A3 A4 · · · An

B

�
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Since P(·|B) is a probability function (as proven above), every theorem we have proven for a probability function
holds for a conditional probability function as well.

Definition 3.1.2. A partition of a set S is a collection of disjoint nonempty sets {Si} whose union is equal to S.
That is,

• Si 6= ∅ ∀i.

• Si ∩ Sj = ∅ for i 6= j.

•
⋃
i Si = S.

Note that there need not be a finite number of sets in in the collection {Si}.

Example 3.1.2. (a) Let S = {1, 2, 3, 4, 5}. A possible partition of S is

{1} {2} {3} {4} {5},

while another is

{1, 2, 3, 4} {5},

and still another is

{1, 2, 3, 4, 5}.

(b) Let S = Z+, the set of natural numbers. A possible partition of S is

{1} {2} {3} {4} {5} . . . ,

while another is

{1, 2, 3, 4} {5, 6, 7, . . .},

and still another is

{1, 2, 3, 4, 5, 6, 7, . . .}. �

Theorem 3.1.3 (Theorem of Total Probabilities). Let S be a minimal sample space and let {Si} be a partition
of S. Then for every event A ⊂ S,

P(A) =
n∑
i=1

P(A|Si)P(Si).

Proof:

P (A) = P(A ∩ S) = P(A ∩ (∪iSi)) = P(∪iASi) =
n∑
i=1

P(ASi) =
n∑
i=1

P(ASi)P(Si)
P(Si)

=
n∑
i=1

P(A|Si)P(Si).

Note that in the penultimate equality, we must have that P(Si) > 0 ∀i. How do we know that this is true? �
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Example 3.1.3. A box has n1 tags numbered 1 and n2 tags numbered 2. A tag is selected at random (each tag is
equally likely). We have two urns:

urn #1 contains r1 red and b1 black balls,
urn #2 contains r2 red and b2 black balls.

If tag #i is selected, one goes to urn #i and selects a ball at random. Thus, our sample space is

S = {(x, y) : x = 1, 2; y = 1, . . . , r1 + b1 if x = 1; y = 1, . . . , r2 + b2 if x = 2}.

Let R be the event that the ball drawn is red, and Hi be the event that tag #i is drawn. What is P(R)? Using the
theorem of total probabilities,

P(R) = P(R|H1)P(H1) + P(R|H2)P(H2) =
(

r1

r1 + b1

)(
n1

n1 + n2

)
+
(

r2

r2 + b2

)(
n2

n1 + n2

)
.

For instance, suppose r1 = 10, b1 = 5, r2 = 5, b2 = 10.

• Let n1 = 2 and n2 = 8:

box

2

2

2

2

2

2

2

2

11

urn 1

10 r
5 b

urn 2

5 r
10 b

⇒ P(R) =
(

10
15

) (
2
10

)
+
(

5
15

) (
8
10

)
= 6

15 <
1
2 .

• Let n1 = 5 and n2 = 5:

box

2

2

2

1

2

1

2

1

11

urn 1

10 r
5 b

urn 2

5 r
10 b

⇒ P(R) =
(

10
15

) (
5
10

)
+
(

5
15

) (
5
10

)
= 1

2 .

• Let n1 = 9 and n2 = 1:

box

1

1

1

1

1

1

2

1

11

urn 1

10 r
5 b

urn 2

5 r
10 b

⇒ P(R) =
(

10
15

) (
9
10

)
+
(

5
15

) (
1
10

)
= 95

150 >
1
2 .

�

Theorem 3.1.4 (Bayes’ Rule). Let S be a minimal sample space and let {Hi} be a partition of S. Then for every
event A ⊂ S and every i,

P(Hi|A) =
P(A|Hi)P(Hi)∑
j P(A|Hj)P(Hj)

.

Proof: Using the definition of conditional probability and the theorem of total probability,

P(Hi|A) =
P(A ∩Hi)

P(A)
=

P(A|Hi)P(Hi)∑
j P(A|Hj)P(Hj)

.

�
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3 - Dependent and Independent Events

Example 3.1.4. Suppose we have equally likely boxes, and in each box we have equally likely drawers. In each
drawer there is one ball, colored red (R) or blue (B):

R

R

box 1

R

B

box 2

B

B

box 3

Let Hi be the event that the ith box is chosen. Suppose we randomly choose a drawer from a randomly chosen box.
Given that a red ball was found in our drawer, what is the probability that the first box was chosen? Intuitively, we
might guess the answer to be 2

3 . To prove this, we can use Bayes’ rule:

P(H1|R) =
P(R|H1)P(H1)∑3
j=1 P(R|Hj)P(Hj)

=
1 · 1

3(
1 · 1

3

)
+
(
0 · 1

3

)
+
(

1
2 ·

1
3

) =
2
3
. �

Example 3.1.5. Suppose a factory has two machines, A and B, which make 60% and 40% of the total population
of parts, respectively. Of their output, machine A produces 3% defective items, while B produces 5% defective items.
Find the probability that a given defective part was produced by machine B.

Let D be the event that an item is defective. We want to find

P(B|D) =
P(D|B)P(B)

P(D|A)P(A) + P(D|B)P(B)
=

(0.05)(0.40)
(0.03)(0.60) + (0.05)(0.40)

≈ 52.63%. �

Example 3.1.6 (Cancer Diagnosis). Let A denote the event that a person tested has cancer, and C denote the
event that a test states that a person has cancer. This diagnostic test has the following properties:

P(A|C) = 0.95, P(C) = 0.005,
P(Ac|Cc) = 0.95, P(Cc) = 1− 0.005 = 0.995,
P(A|Cc) = 1− 0.95 = 0.05.

We want to find the probability that a person who is diagnosed with cancer actually has cancer:

P(C|A) =
P(A|C)P(C)

P(A|C)P(C) + P(A|Cc)P(Cc)
=

(0.95)(0.005)
(0.95)(0.005) + (0.05)(0.995)

≈ 8.72%.

Overall, the test will detect cancer in 95% of the cases where cancer is present. But in only 8.72% of the cases where
the test is positive is cancer actually present. Care must be taken in interpreting this result – what we actually mean
is that if you take a random person off the street and test her for cancer and you get a positive result, there is an
8.72% chance that she actually has cancer. This takes into account the whole population, the vast majority of which
does not have cancer! This is very different from testing someone who shows some symptoms of possibly having
cancer (which is not representative of the entire population).

C Members of the population
who have cancer

P(C|A) = 8.72%,

P(Cc|A) = 91.28%.
A

Members of the population
who test positive for cancer

�
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3.2 Independence

Definition 3.2.1 (Independence). Let C be a collection of events. That is, C ⊂ Ψ for some sample space S. The
events in C are said to be independent iff the probability of the joint occurrence of any finite number of them equals
the product of their probabilities. That is,

P(A1A2 · · ·An) = P(A1)P(A2) · · ·P(An) for any A1, . . . , An ∈ C. (3.2.3)

If C consists of two events A and B, then these two events are independent iff

P(AB) = P(A)P(B).

If C consists of three events A, B and C, then these three events are independent iff

P(AB) = P(A)P(B), P(AC) = P(A)P(C), P(BC) = P(B)P(C), and P(ABC) = P(A)P(B)P(C).

If C has an infinite number of events, than (3.2.3) must hold for any finite collection of events in C.

Example 3.2.1. Suppose we draw with replacement a sample size of 2 from an urn containing 4 white balls and 2
red balls.

Let A be the event that the first ball drawn is white,
Let B be the event that the second ball drawn is white.

Thus,

S = {(x, y) : x = 1, . . . , 6; y = 1, . . . 6} ⇒ Size of S is 6 · 6 = 36,
A = {(x, y) : x = 1, . . . , 4; y = 1, . . . 6} ⇒ Size of A is 4 · 6 = 24,
B = {(x, y) : x = 1, . . . , 6; y = 1, . . . 4} ⇒ Size of B is 6 · 4 = 24,

AB = {(x, y) : x = 1, . . . , 4; y = 1, . . . 4} ⇒ Size of AB is 4 · 4 = 16,

Then assuming equally lilkely points in S,

P(A) =
24
36

=
2
3
, P(B) =

24
36

=
2
3
, P(AB) =

16
36

=
4
9
.

Note that P(AB) = 4
9 =

(
2
3

) (
2
3

)
= P(A)P(B). Then we can conclude that A and B are independent. �

At this point, one might wonder if all of (3.2.3) really is necessary for independence. Would it be enough simply to
have pairwise independence? That is, if we know that

P(AiAj) = P(Ai)P(Aj) ∀i, j ∈ {1, 2, . . . , n}, (3.2.4)

can we then assume (3.2.3)? The answer is no.
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Example 3.2.2 (Counterexample). This counterexample is due to Russian probabilist Sergei Bernstein (1880-
1968). Suppose S consists of 4 equally likely points x1, x2, x3 and x4. Let

A = {x1, x2}, B = {x1, x3}, C = {x1, x4} ⇒ P(A) = P(B) = P(C) =
1
2
.

Also, AB = BC = AC = {x1}, so that P(AB) = P(BC) = P(AC) = 1
4 = P(A)P(B) = P(B)P(C) = P(A)P(C).

However,

P(ABC) = P({x1}) =
1
4
6= 1

8
= P(A)P(B)P(C).

Therefore (3.2.4) is not equivalent to (3.2.3). �

Recall that P(AB) = P(A|B)P(B) = P(B|A)P(A). This is true for any two events A and B. From above, we now
know that A and B are independent iff P(AB) = P(A)P(B). From these two statements, we might deduce that A
and B are independent iff P(A) = P(A|B), or iff P(B) = P(B|A). We shall prove this below.

Theorem 3.2.1. If P(B) > 0, then a necessary and sufficient condition that the events A and B are independent is
that

P(A|B) = P(A).

Proof:

(⇒) Assume independence. Then P(AB) = P(A)P(B), so that

P(A|B) =
P(AB)
P(B)

=
P(A)���P(B)

�
��P(B)

= P(A).

(⇐) Now assume that P(A|B) = P(A). Then

P(AB) = P(A|B)P(B) = P(A)P(B),

which shows independence.

�

Example 3.2.3. Toss a fair coin 5 times and assume that the outcome on any one toss is independent of the
outcomes of all other tosses. What is the probability of getting five heads?

Let Hi be the event that a head is obtained on the ith toss. Our sample space is

S = {(x1, . . . , x5) : xi = H,T ; i = 1, . . . , 5} ⇒ Size of S is 25.

Assume all points in S are equally likely. Thus, the probability of any one point in S is 1
25 = 1

32 . In particular, the
probability of getting our five heads (H,H,H,H,H) is 1

32 . However, we can also get that answer a different way.
Note that

Hi = {(x1, . . . , x5) : xi = H, xj 6=i = H,T} ⇒ Size of Hi is 24.
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Therefore, P(Hi) = 24

25 = 1
2 ∀i, so that

P({(H,H,H,H,H)}) = P(H1H2H3H4H5) = P(H1)P(H2)P(H3)P(H4)P(H5) =
(

1
2

)5

=
1
25

=
1
32
,

as we had before. �

The purpose of doing the above problem two different ways is to show just that – that there is sometimes (often!)
two or more ways to find the answer to a given problem. While this example is trivial in that both ways are very
simple, there are often times where one way to get an answer is (much) easier than another way. Therefore, if finding
a solution to a problem is very difficult, it might be useful to stop and think of another approach to the problem.

Definition 3.2.2 (Independence of Random Variables). Random variables X1, X2, . . . , Xn are independent iff
their joint pmf or pdf can be factored into the product of their individual pmf’s or pdf’s. That is, iff

pX(x1, x2, . . . , xn) = pX1(x1)pX2(x2) · · · pXn(xn) ∀(x1, x2, . . . , xn) ∈ Rn (3.2.5)

if X1, X2, . . . , Xn are discrete, and

fX(x1, x2, . . . , xn) = fX1(x1)fX2(x2) · · · fXn(xn) ∀(x1, x2, . . . , xn) ∈ Rn (3.2.6)

if X1, X2, . . . , Xn are continuous. Furthermore, the set of random variables in an infinite sequence of them X1, Xs, . . .
are independent if every finite subset of them is independent, as described above.

It may be tempting to ask why the above definition of independent random variables is slightly different from the
definition of independent events as stated in (3.2.3). That is, n events are independent only if every set of k of them
are mutually independent for every value of k ≤ n, whereas for random variables it suffices to just check if all n of
them are independent. Why is this so?

The answer lies in the fact that (3.2.3) must be true for one given set of events A1, . . . , An, whereas (3.2.5) and
(3.2.6) must hold for all values of x1, . . . , xn. Specifically, it can be shown (e.g., Parzen (1960, pp. 294-295)) that
(3.2.5) and (3.2.6) are both equivalent to the condition that

FX(x1, x2, . . . , xn) = FX1(x1)FX2(x2) · · ·FXn(xn) ∀(x1, x2, . . . , xn) ∈ Rn,

which is equivalent to

P(X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn) = P(X1 ≤ x1)P(X2 ≤ x2) · · ·P(Xn ≤ xn) ∀(x1, x2, . . . , xn) ∈ Rn. (3.2.7)

Note that if we set Ai = [Xi ≤ xi], then (3.2.7) is equivalent to (3.2.3), with the exception of having to check this
condition for every value of k ≤ n. Again, however, the a(3.2.7) must be true for every value of (x1, x2, . . . , xn).
Now note that if we set xi = ∞, then we have FXi(xi) = FXi(∞) = P(Xi ≤ ∞) = 1. Therefore, we can modify
(3.2.7) to be any subset of the n random variables simply by setting a certain number of values of xi to ∞. For
example, if we want to check the condition for X1, X2 and X3, we set xi =∞ ∀i > 3, thus giving us

FX(x1, x2, x3,∞,∞ . . . ,∞) = FX1(x1)FX2(x2)FX3(x3)FX4(∞)FX5(∞) · · ·FXn(∞)

which is of course equivalent to

FX(x1, x2, x3) = FX1(x1)FX2(x2)FX3(x3).

Example 3.2.4. From Example 3.2.3 with 1 denoting heads and Xi denoting the outcome of the ith toss,

pX(1, 1, 1, 1, 1) = pX1(1)pX2(1)pX3(1)pX4(1)pX5(1) =
1
25
. �
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Example 3.2.5. Two dice are rolled. Let the r.v. Xi denote the outcome on the ith die, i = 1,. Consider the joint
r.v. (X1, X2) defined over the sample space S1 × S2:

pX1,X2(x1, x2) = pX1(x1) · pX2(x2) =
1
6
· 1

6
=

1
36
∀(x1, x2) ∈ S1 × S2. �

Example 3.2.6. Suppose the joint pdf for the r.v. (X,Y ) is given by

fX,Y (x, y) =

{
λ2e−λ(x+y) x, y ≥ 0
0 otherwise

.

Are X and Y independent? We first compute

fX(x) =
∫ ∞

0

λ2e−λ(x+y) dy

= λe−λx
∫ ∞

0

λe−λy dy

= λe−λx
[
−e−λy

]y=∞
y=0

= λe−λx(0 + 1)

= λe−λx, x ≥ 0,

fY (y) = λe−λy, y ≥ 0. by symmetry

By inspection, it can be verified that fXY (x, y) = fX(x)fY (y) ∀(x, y) ∈ R2. Thus, X and Y are independent. �

The following theorem is stated for continuous r.v.’s, but a similar theorem can be stated and proven for discrete
r.v.’s. Since the process is the same, only the continuous case will be stated and proven; we can assume the discrete
case will follow.
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Theorem 3.2.2. Let the r.v.’s X1 and X2 have the joint pdf fX1,X2(x1, x2). The r.v.’s X1 and X2 are independent
iff fX1,X2(x1, x2) can be written as a product of a non-negative function of x1 alone and a non-negative function of
x2 alone. That is, if

fX1,X2(x1, x2) = g(x1)h(x2) ∀(x1, x2) ∈ R2,

where g(x1) ≥ 0 and h(x2) ≥ 0. The set of points where g(x1) > 0 is independent of x2, and the set of points where
h(x2) > 0 is independent of x1.

Proof:

⇒ If X1 and X2 are independent, then the theorem holds, since fX1,X2(x1, x2) = fX1(x1)fX2(x2) = g(x1)h(x2),
where g(x1) ≥ 0 and h(x2) ≥ 0. Furthermore, the set of points where g(x1) > 0 is independent of x2, and the
set of points where h(x2) > 0 is independent of x1.

⇐ Suppose fX1,X2(x1, x2) = g(x1)h(x2), where g(x1) ≥ 0 and h(x2) ≥ 0 and the set of points where g(x1) > 0 is
independent of x2, and the set of points where h(x2) > 0 is independent of x1. Then

fX1(x1) =
∫ ∞
−∞

g(x1)h(x2) dx2 = g(x1)
∫ ∞
−∞

h(x2) dx2, (3.2.8)

fX2(x2) =
∫ ∞
−∞

g(x1)h(x2) dx1 = h(x2)
∫ ∞
−∞

g(x1) dx1, (3.2.9)

where neither
∫ ∞
−∞

h(x2) dx2 nor
∫ ∞
−∞

g(x1) dx1 depend on x1 or x2. Furthermore, note that since the set of

points where g(·) > 0 and h(·) > 0 does not depend on x2 or x1, respectively, then

1 =
∫ ∞
−∞

∫ ∞
−∞

fX1,X2(x1, x2) dx1dx2 =
∫ ∞
−∞

∫ ∞
−∞

g(x1)h(x2) dx1dx2 =
∫ ∞
−∞

g(x1) dx1

∫ ∞
−∞

h(x2) dx2.

(3.2.10)

Therefore,

fX1,X2(x1, x2) = g(x1)h(x2)

= g(x1)
[∫ ∞
−∞

g(x1) dx1

∫ ∞
−∞

h(x2) dx2

]
h(x2) by (3.2.10)

= g(x1)
∫ ∞
−∞

h(x2) dx2 · h(x2)
∫ ∞
−∞

g(x1) dx1

= fX1(x1)fX2(x2), by (3.2.8) and (3.2.9)

which shows that X1 and X2 are independent.

�

Example 3.2.7. Suppose

fX1,X2(x1, x2) =

{
x1 + x2 x1, x2 ∈ (0, 1)
0 otherwise

.

Then X1 and X2 are not independent, since f(x1, x2) cannot be factored into a product of a non-negative function
of x1 and a non-negative function of x2 alone. �
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Example 3.2.8. Suppose

fX1,X2(x1, x2) =

{
8x1x2 0 < x1 < x2 < 1
0 otherwise

.

Then X1 and X2 are not independent, since the set of points where g(·) > 0 depends on x2 and the set of points
where h(·) > 0 depends on x1. �

Example 3.2.9. Suppose

fX1,X2(x1, x2) =

{
λ2e−λ(x1+x2) x1, x2 ≥ 0
0 otherwise

.

Then X1 and X2 are independent, since we can write fX1,X2(x1, x2) as

fX1,X2(x1, x2) =

{(
λ2e−λx1

) (
e−λx2

)
= g(x1)h(x2) x1, x2 ≥ 0

0 otherwise
.

where g(·) ≥ 0, h(·) ≥ 0, and where the domains where g(·) > 0 and h(·) > 0 do note depend on x2 or x1,
respectively. �
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4 Probability Laws

4.1 Discrete Distributions

4.1.1 Bernoulli

pX(x) =

{
p x = 1
1− p x = 0

.

p is a parameter such that 0 ≤ p ≤ 1. We could write pX(x) as

pX(x) = px(1− p)1−x, x ∈ {0, 1}.

We denote this as X ∼ Bernoulli(p).

Example 4.1.1. Toss a coin. Let 1 denote a head and 0 denote a tail. If the coin is fair, then p = 1
2 . �

Example 4.1.2. Consider an urn with N balls, of which n1 are red and n2 = N − n1 are white. Draw with
replacement, and let drawing a red ball be designated as a success.

Let 1 denote a red ball drawn,
Let 0 denote a white ball drawn.

Then we have p = n1
N and 1− p = n2

N . �

4.1.2 Binomial

Let X denote the number of successes in n independent Bernoulli trials:

X = X1 + · · ·+Xn, Xi
iid∼ Bernoulli(p).

where iid stands for independently and identically d istributed. Our sample space is

S = {(x1 + · · ·+ xn) : xi = 0, 1}.

Since these are independent Bernoulli trials, we can multiply their respective probabilities, so that, for example,

P({(1, 1, 0, 1, 0)}) = pp(1− p)p(1− p) = p3(1− p)2.

In general,

P({(1, 1, 0, 1, 0, . . . , 0, 1)}) = pk(1− p)n−k,

where n is the number of trials and k =
∑
i xi is the number of successes (1’s) in those trials. however, to find

P(X = k), we must add the above probability for all configurations of the zeroes and ones such that
∑
i xi = k.

That is,

P(X = k) = P({(x1, . . . , xn) :
n∑
i=1

xi = k; xi = 0, 1}) = apk(1− p)n−k,

where a is the number of ways to pick k successes out of n trials. However, that number is by definition
(
n
k

)
.

Altogether, using a little change of notation,

pX(x) =
(
n

x

)
px(1− p)n−x, x ∈ {0, 1, . . . , n}.
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Example 4.1.3. Toss a coin with probability p = 1
2 for a head. Toss the coin 10 times. What is the probability

that in 10 throws, one obtains 2 heads? 5 heads?

pX(2) =
(

10
2

)(
1
2

)2(1
2

)8

=
10!

8!2!210
≈ 4.39%.

pX(5) =
(

10
5

)(
1
2

)5(1
2

)5

=
10!

5!5!210
≈ 24.61%. �

4.1.3 Hypergeometric

Draw from an urn without replacement. There are N balls, where p ∈ [0, 1] and Np is an integer:

100p% are red,
100(1− p)% are white.

Take a sample of size n without replacement. Let X denote the number of red balls drawn.

pX(x) =

(
Np

x

)(
N(1− p)
n− x

)
(
N

n

) , x ∈ {0, 1, . . . ,min(n,Np)}.

Example 4.1.4. A population contains 200 articles of which 5% are defective. That is, we have 200(0.05) = 10
defective articles. What is the probability that a sample of size 20 without replacement has exactly 3 defective
articles?

pX(3) =

(
10
3

)(
190

20− 3

)
(

200
20

) =

(
10
3

)(
190
17

)
(

200
20

) ≈ 5.48%.

If the sample is drawn with replacement, then

pX(3) =
(

20
3

)
(0.05)3(0.95)17 ≈ 5.96%. �

Note that there isn’t much of a difference whether we choose with or without replacement. This is because we have
a large population size N = 200 with respect to our sample n = 20. In fact, it can be shown (e.g., a variation
on Ferguson (1996, pp. 201-202)) that for a given proportion p and sample size n, as N → ∞, the hypergeometric
distribution approaches the binomial. Thus, when N is large with respect to n, there is practically no difference
between sampling with and without replacement.

Example 4.1.5. A population contains 2000 articles, of which 5% are defective. That is, there are 200(0.05) = 100
defective articles. Draw a sample of size 4 without replacement, and let X denote the number of defective articles
chosen. Since this is without replacement, we use the hypergeometric distribution:

pX(3) =

(
100
3

)(
1900

1

)
(

2000
4

) =
100!4!1996!1900

97!3!2000!
≈ 4.62× 10−4.
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If the sample is drawn with replacement, then we once again use the binomial distribution:

pX(3) =
(

4
3

)(
100
2000

)3(1900
2000

)1

≈ 4.75× 10−4. �

4.1.4 Geometric

A random phenomenon obeying the geometric probability law is the number of trials required to obtain the first
success (failure) in a sequence of independent, repeated Bernoulli trials in which the probability of success (failure)
on each trial is p. Note that this includes the last trial (the one success (failure)). For example

pX(5) = P(X = 5) = P({(0, 0, 0, 0, 1)}) = (1− p)4p, p ∈ [0, 1].

In general,

pX(x) = p(1− p)x−1, x ∈ Z+, p ∈ [0, 1].

Example 4.1.6 (Quality Control). If the probability that a toaster works is 0.9 and toasters are tested until one
fails, what is the probability that the first failure o occurs on the third test?

pX(3) = (0.1)(0.9)2 = 8.10%. �

4.1.5 Poisson

A random variable X follows a Poisson distribution (denoted X ∼ P(λ)) if it has the following pmf:

pX(x) =
e−λλx

x!
, x ∈ Z∗, λ > 0. (4.1.1)

The Poisson probability law has become increasingly important in recent years as more phenomena to which the law
applies have been studied:

• In physics: The emission of electrons from filaments of a vacuum tube or from a photosensitive substance under
the influence of light, radioactive decomposition.

• In operations research: Demands for service on cashiers, salesmen, cargo holding facilities of a port, maintenance
at a machine shop, etc. Also, the role at which service is rendered.

The usual situation to which the Poisson probability law applies is in a Poisson process, where we are to determine
the number of occurrences of some event in a time or space interval. For example, the number of planes arriving at
a certain airport during a given hour, the number of organisms in a unit volume of some fluid.

By contrast, the usual situation to which the binomial probability law applies is the one in which n independent
occurrences of some experiment one may determine:

• The number of trials in which a certain event occurred: E.g., the number of heads in n tosses of a coin.

• The number of trials in which a certain event did not occur.
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For the Poisson process,

• We are on a timeline starting at time t = 0,

• One event (e.g., an earthquake) happens at a rate µ (e.g., 3 times per year),

• N(t) is a discrete random variable giving the number of events that happened up to time t (in the same units
as µ – e.g., 1 year).

• The probability that there are k events by time t is

P(N(t) = k) = e−µt
(µt)k

k!
k ∈ Z∗, µ > 0. (4.1.2)

where µ is the average rate at which events occur per unit time or space t.

There are a couple things to note about such a process:

• It may be easy to confuse (4.1.1) with (4.1.2): Why does one use λ and the other use µt? The key to
understanding this is that (4.1.1) uses a unitless parameter λ, whereas (4.1.2) uses a rate µ, which is expressed
as a number of events per unit. If t is expressed in terms of the same unit, then

µt =
#

1 ��unit
· (# ���units)

where the units cancel each other out. Thus, µt is also unitless. We can simply think of (4.1.2) as a special
case of (4.1.1), where we set λ = µt.

• Unfortunately, some books (notably, our suggested textbook by Ross) use λ to denote both the parameter of
a Poisson distribution and the rate of a Poisson process. This is definitely confusing.

• In practice, we can simply think of (almost) every use of the Poisson distribution as a Poisson process. That is,
in most applications, we will have some kind of rate µ, which will need to be multiplied by some quantity (not
just time) t, as long as the units match (and thus cancel each other out). By doing this, we avoid potential
confusion about what λ value to use. For example, Ross (2006, Ex. 7a, p. 162) describes typographical errors
with a parameter λ = 1

2 . Within the context of the problem, this is really a Poisson process with µ = 1 error
2 pages

and t = 1 page. Not only does this alleviate any confusion as to what is happening, but it also allows us to
change the problem appropriately if the quantity changes (e.g., what if we want to model typographical errors
for 2 pages?).

We will say more about the Poisson process later on in this chapter.

Example 4.1.7. Observe times at which autos arrive at a toll collector’s booth on a toll bridge. Suppose we know
that the average rate µ of arrival of autos per minute is 1.5. The probability that x autos will arrive in a time period
of length one minute is

pX(x) =
e−1.5(1.5)x

x!
, x ∈ Z∗

whereas the probability that x autos will arrive in a half-minute period is

pX(x) =
e−1.5/2(1.5/2)x

x!
. x ∈ Z∗ �
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For the derivation of the Poisson probability law, we paraphrase from the derivation given by Feller (1968, pp. 446-
448) or Ross (2006, pp. 170-172). Let Xt be the size of the population1 at time t. Let pX(n; t) = P(Xt = n). We
assume the following three postulates ∀t > 0 and ∀h > 0 such that h is “small”:

(1) The probability that the population will increase by 1 in a time interval from t to t+ h is

µh+ o(h),

where µ > 0 and lim
n→0

o(h)
h

= 0. The probability of this increase does not depend on the number in the
population at time t.

(2) The probability that in the time interval from t to t+ h, the population size will change by 2 or more is

o(h).

This probability is independent of population size.

(3) The probability that the population size will.

These postulates will allow us to calculate pX(n; t) = P(Xt = n).

For n ≥ 1, the event [Xt+h = n] can happen in any one of two mutually exclusive ways:

(a) The population at time t is n and there is no change in the population from t to t+ h.

(b) The population at time t is n− 1 and increases by 1 from time t to t+ h.

Let

P[(a)] = (Probability in state n at time t) · (Probability no increase from time t to t+ h)
= pX(n; t) [1− µh− o(h)− o(h)]

P[(b)] = (Probability in state n− 1 at time t) · (Probability increase of 1 from time t to t+ h)
= pX(n− 1; t) [µh+ o(h)]

Therefore, for n ≥ 1,

P(Xt+h = n) = pX(n; t+ h) = pX(n; t)[1− µh− 2o(h)] + pX(n− 1; t)[µh+ o(h)] (4.1.3)

while for n = 0,

P(Xt+h = 0) = pX(o; t+ h) = pX(o; t)[1− µh− 2o(h)]. (4.1.4)

Equation (4.1.3) may be written as

pX(n; t+ h)− pX(n; t)
h

= −µpX(n; t) + µpX(n− 1; t) +
o(h)[−2pX(n; t) + pX(n− 1; t)]

h

Taking the limit as h→ 0, we have

lim
h→0

pX(n; t+ h)− pX(n; t)
h

=
∂

∂t
pX(n; t) = −µpX(n; t) + µpX(n− 1; t) (4.1.5)

1The population could be particles emitted by a radioactive source, biological organisms of a given kind present in a certain
environment, persons waiting in a queue for service, etc.
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since lim
h→0

o(h)
h

= 0. If we take the limit of (4.1.4) as h→ 0, we have

∂

∂t
pX(0; t) = −µpX(0; t). (4.1.6)

We now must solve (4.1.5) and (4.1.6) for pX(n; t), which requires differential equations. The questions of existence
and uniqueness of solutions of these partial differential equations will not be discussed here.

For n = 0 under the assumption that pX(0; 0) = 1, (4.1.6) has the solution

pX(0; t) = e−µt.

For n = 1 under the assumption that pX(1; 0) = 0, (4.1.5) has the solution2

pX(1; t) = µe−µt
∫ t

0

eµxpX(0;x) dx = µe−µtt = µte−µt.

By induction under the assumption that pX(n; 0) = 0 for n > 0, we obtain

pX(n; t) =
e−µt(µt)n

n!
, x ∈ Z∗.

Example 4.1.8. Suppose a retailer discovers that the number of items of a certain kind demanded by customers
in a given period obeys a Poisson probability law with known parameter λ. What stock k of this item should the
retailer have on hand at the beginning of the time period in order to have a probability of at least 0.99 that he will
be able to supply immediately all customers who demand the item under consideration?

Let X denote the number of items demanded in a given period. Then

P(X ≤ k) =
k∑
x=0

e−λλx

x!
≥ 0.99 ⇔ P(X > k) =

∞∑
x=k+1

e−λλx

x!
≤ 0.01.

To find k, use a computer or see the Poisson tables for the particular value of λ. For instance,

λ = 1 ⇒
∞∑
x=5

e−11x

x!
= 0.0037,

∞∑
x=4

e−11x

x!
= 0.0190 ⇒ k = 4.

λ = 3 ⇒
∞∑
x=9

e−33x

x!
= 0.0038,

∞∑
x=8

e−33x

x!
= 0.0119 ⇒ k = 8.

λ = 20 ⇒
∞∑

x=32

e−2020x

x!
= 0.0081 ⇒ k = 31.

�

Theorem 4.1.1. Let X have a binomial distribution with parameters n and p. If λ = np, then p = λ
n . Fix λ and

let n and p vary.

lim
n→∞

(
n

x

)(
λ

n

)x(
1− λ

n

)n−x
=
e−λλx

x!
.

2Recall that an integrating factor is used to solve a differential equation dy
dt

+ Py = Q. The integrating factor is ρ = exp(
∫
P dt),

and the solution is ρy =
∫
ρQ dt+ C.
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Proof: We know that(
n

x

)(
λ

n

)x(
1− λ

n

)n−x
=

1
x!
λx
(

1− λ

n

)n−x
n(n− 1) · · · (n− x+ 1)

nx
.

We know that

lim
n→∞

(
1− λ

n

)n
= e−λ by definition

lim
n→∞

(
1− λ

n

)−x
= 1

lim
n→∞

λx

x!
=
λx

x!

lim
n→∞

n

n

(n− 1)
n

(n− 2)
n

· · · (n− x+ 1)
n

= 1

Therefore,

lim
n→∞

[
1
x!
λx
(

1− λ

n

)n−x
n(n− 1) · · · (n− x+ 1)

nx

]
=
λx

x!
e−λ · 1 · 1.

�

In the above theorem, we could also write the approximation as

lim
n→∞

(
n

k

)
pk(1− p)n−k =

e−np(np)k

k!
.

From this result, we can deduce that we can use the Poisson approximation to the binomial if p ≤ 0.1, n is large and
np is not too large. For example if n = 100 and p = 0.01,

x Binomial(100,0.01) Poisson, np = 1

0 0.366 0.368

1 0.370 0.368

2 0.185 0.184

3 0.061 0.061
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Example 4.1.9. Suppose it is well known that the probability that an item is produced by a certain machine will be
defective is 0.1. Find the probability that a sample of 10 items, selected at random from the output of the machine,
will contain no more than one defective item.

Binomial: P(X ≤ 1) =
(

10
0

)
(0.1)0(0.9)10 +

(
10
1

)
(0.1)1(0.9)9 = 73.61%.

Poisson: P(X ≤ 1) =
e−110

0!
+
e−111

1!
= 73.58%.

where for the Poisson, we set λ = np = 1. �

Example 4.1.10. Assume the number of live polio cells in a certain Polio vaccine follows a Poisson probability law
with µ = 1 cell per milliliter. let X denote the number of cells per milliliter.

P(X = x) =
e−11x

x!
, x ∈ Z∗.

Let Y denote the number of cells per 10 milliliters: µt = 1 · 10 = 10.

P(Y = y) =
e−1010y

y!
, y ∈ Z∗. �

4.2 Continuous Distributions

4.2.1 Uniform Distribution

Assume that the density function is non-zero only for values of x ∈ (a, b) and that the pdf is defined so that if B is
any interval contained in (a, b), then

P(B) =
length of B

length of (a, b)
=

length of B
b− a

.

The uniform distribution is an extension of the notion of a finite sample space S of size n, where

P({xi}) =
1
n

∀xi ∈ S.

For the uniform distribution, the distribution function FX(x) = P(X ≤ x) is given by

FX(x) =


0 x ≤ a
x− a
b− a

a < x < b

1 x ≥ b

.

the pdf is given by

fX(x) = F ′X(x) =
1

b− a
, a < x < b.
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Example 4.2.1. If X is a uniform rv with (a, b) = (1, 1.5), then

fX(x) =
1

1.5− 1
= 2, 1 < x < 1.5,

x

fX(x)

1 1.5

2

FX(x) =


0 x < 1
2(x− 1) 1 ≤ x ≤ 1.5
1 x > 1.5

.

x

fX(x)

1 1.5

1

Furthermore,

P(0 < X < 1.2) =
∫ 1.2

1

2 dx = [2x]1.21 = 2.4− 2 = 0.4,

P(−3 < X < 6) = FX(6)− FX(3) = 1− 0 = 1,

or =
∫ 6

−3

fX(x) dx =
∫ 1.5

1

2 dx = [2x]1.51 = 3− 2 = 1. �
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Example 4.2.2. The time, measured in minutes, required by a certain man to travel from his home to the train
station is a random phenomenon obeying a uniform probability law over the interval from 20 to 25 minutes. If he
leaves home promptly at 7:05 am, what is the probability that he will catch a train that leaves the station promptly
at 7:28 am?

He will catch the train if he arrives at the station on or before 7:28 am. Let the rv X denote the time in minutes it
takes to travel from home to the station. By hypothesis, X has a uniform (20, 25) distribution.

time
7:05 7:28

leaves home train leaves

28− 5 = 23 or less minutes for travel

He thus catches the train if X ≤ 23 minutes.

P(X ≤ 23) =
∫ 23

20

1
5
dx =

3
5

= 60%.

x (minutes)

fX(x)

20 23 25

1
5

Note that P(X ≤ 23) = FX(23). �

4.2.2 Exponential Distribution

fX(x) = λe−λx, x ≥ 0, λ > 0.

This is denoted as X ∼ Exp(λ). Phenomena which obey this law are life lengths of almost anything: light bulbs,
machines, and even humans (from ages 2 to 18, if they don’t drive). λ is the failure rate, expressed as the number
of failures per unit time.

Example 4.2.3. Consider a radar set of the type whose failure law is exponential. If radar sets of this type have
a failure rate of λ = 1 set per 1000 hours, find the length of time t such that the probability is 0.99 that a set will
operate satisfactorily for a time greater than t.

Let T denote the time to failure. Then

P(T > t) = 0.99 =
∫ ∞
t

1
1000

e−x/1000 dx =
[
−e−x/1000

]∞
t

= e−t/1000 = 0.99.

Taking the log of both sides gives

−t
1000

= ln(0.99) ⇔ t = −1000 ln(0.99) = 10 hours.
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x (hours)

f(x)

1
1000

10

(magnified)

⇒

x (hours)

f(x)

1
1000

10 100

�

Theorem 4.2.1. Given a Poisson process with parameter µ, designate as time 0 the time at which we start observing
the process. Let T be the time which passes until the first event occurs. T has an exponential distribution with
parameter µ.

Proof: Our diagram is the following:

time
0 T

begin observing first event

If t < 0, then P(T ≤ t) = 0. Now let t ≥ 0 be given. then

P(T > t) = probability that no events occur in (0, t] =
e−µt(µt)0

0!
= e−µt.

Therefore,

FT (t) = 1− P(T > t) = 1− e−µt ⇒ fT (t) = F ′T (t) = µe−µt for t > 0.

It follows that the interarrival times between two Poisson events has an exponential distribution. �

It also can be proven that if the interarrival times between any two arrivals (must hold for all arrival times) of a
process have an exponential distribution with parameter µ, then the process is a Poisson process with an average
number of arrivals per unit time = µ. That is, the above theorem is an if and only if statement.

Notationally, let Y1, Y2, . . . denote the inter-arrival times of the events. Specifically, let Yk denote the time between
the k − 1th and kth events. First of all, note that

[Y1 > t] = [N(t) = 0] = [N(t) < 1] ⇒ P(Y1 > t) = P(N(t) < 1).

This is proven by thinking about what these two events mean, in plain English:

• [Y1 > t]: “The time between our starting time (t = 0) and the first event is greater than t,”

• [N(t) = 0]: “No events happened between the starting time and time t.”

Likewise, using the same logic, we have that

[Y1 < t] = [N(t) > 0] = [N(t) ≥ 1] ⇒ P(Y1 < t) = P(N(t) ≥ 1). (4.2.7)

The event [Y1 = t] is of no consequence, since P(Y1 = t) = 0 (since Y1 is a continuous random variable).

Secondly, define Wk = Y1 + Y2 + · · ·+ Yk. Then note that

[Wk > t] = [N(t) < k] ⇒ P(Wk > t) = P(N(t) < k).

since once again in plain English
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• [Wk > t]: “The time begin our starting time and the kth event is greater than t,”

• [N(t) < k]: “Fewer than k events happened between the starting time and time t.”

Likewise,

[Wk < t] = [N(t) ≥ k] ⇒ P(Wk < t) = P(N(t) ≥ k).

As with Y1, the event [Wk = t] is of no consequence.

Now, what can we say about the event [N(t) = k]?

[N(t) = k] = [there are k events between time 0 and time t]

= [the kth event happened before time t] ∩ [the k + 1th event happened after time t]
= [Wk < t] ∩ [Wk+1 > t]
= [Wk < t] ∩ [Yk+1 > t−Wk].

so that

P(N(t) = k) = P([Wk < t] ∩ [Wk+1 > t]).

Later on, we’ll learn how to evaluate the probability on the right of this equation. For now, it’s enough to just
understand the logic behind it.

How is Y1 distributed? By (4.1.2), we have that

FY1(t) = P(Y1 ≤ t) = P(N(t) > 0) = 1− e−µt ⇒ fY1(t) =
dFY1(t)
dt

= µe−µt, t > 0.

Thus, Y1 is distributed as an exponential distribution with parameter µ. Furthermore, because of the memoryless
property of a Poisson process (part of the first assumption3), the same can be said for Yk for all values of k. All in
all,

The inter-arrival times of a Poisson process are exponentially distributed with parameter µ.

Example 4.2.4. In the morning, students enter the STAT/MATH 394 class at a rate of 1 for every 3 minutes.

1. What is the probability that no one enters between 8:15 and 8:20?

Solution:
Here we have µ = 1

3 minutes and t = 5 minutes, so that, using (4.1.2), µt = 5
3 and so

P(N(5) = 0) = e−5/3 ≈ 18.89%. �

2. What is the probability that at least 4 students enter the classroom during that time?

Solution:
Again with µt = 5

3 , we have by (4.1.2) again that

P(N(5) ≥ 4) = 1−
3∑
k=0

P(N(5) = k) = 1−
3∑
k=0

e−5/3 (5/3)k

k!
≈ 8.83%. �

3“The probability of this increase does not depend on the number in the population at time t,”
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Example 4.2.5. Suppose that the number of accidents occurring on a highway each day is a Poisson random variable
with parameter µ = 3.

1. Find the probability that 3 or more accidents occur today.

Solution:
First of all, conceptually, note that while we are dealing with the regular Poisson distribution here (4.1.1), we
are implicitly modeling a Poisson process (4.1.2). That is, we can think of µ = 3

1 day and t = 1 day, so that

λ = µt =
3

1 ��day
· 1 ��day = 3.

Therefore, using (4.1.2),

P(N(1) ≥ 3) = 1−
2∑
k=0

P(N(1) = k) = 1−
2∑
k=0

e−3 3k

k!
≈ 57.68%. �

2. Find the probability that 3 or more accidents occur today, given that at least 1 accident occurs today.

Solution:
Here we simply use the formula for a conditional distribution:

P(N(1) ≥ 3|N(1) ≥ 1) =
P ([N(1) ≥ 3] ∩ [N(1) ≥ 1])

P(N(1) ≥ 1)
definition of conditional prob

=
P (N(1) ≥ 3)
P(N(1) ≥ 1)

since [N(1) ≥ 3] ⊆ [N(1) ≥ 1]

=
1−

∑2
k=0 e

−3 3k

k!

1− e−3

≈ 60.70%. �

Example 4.2.6. Customer arrive at McDonald’s according to a Poisson process with parameter µ = 0.5/minute.
Let T denote the time of arrival of the next customer. Starting at time 0, what is the probability that the next
customer arrives more than 2 minutes from now?

P(T > 2 minutes) =
∫ ∞

2

0.5e−0.5t dt = e−1 ≈ 36.79%.

What is the probability that the next customer arrives in less than 1 minute?

P(T < 1 minute) =
∫ 1

0

0.5e−0.5t dt = 1− e−1/2 ≈ 39.35%. �

Theorem 4.2.2 (Memorylessness). If T ∼ Exp(λ) and a, b > 0, then P(T > a+ b | T > a) = P(T > b).

time
0 a a+ b
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Proof:

P(T > a+ b | T > a) def=
P(T > a+ b)

P(T > a)
=

∫ ∞
a+b

λe−λt dt∫ ∞
a

λe−λt dt

=
e−λ(a+b)

e−λa
= e−λb = P(T > b).

�

4.2.3 Normal Distribution

This is also known as the Gaussian, LaPlace or bell-shaped distribution.

fX(x) =
1

σ
√

2π
e−(x−µ)2/2σ2

, x ∈ R; µ ∈ R; σ > 0.

This is denoted as X ∼ N(µ, σ2) or X ∼ N(µ, σ). To avoid confusion, we will state whether σ is squared or not, as
in X ∼ N(5, σ2 = 3) or X ∼ N(−2, σ = 5).

x

f(x)

µ µ+ σµ− σ

The normal distribution has been important in probability theory since the 18th century. The distribution was first
encountered in the work of Abraham DeMoivre (1667-1754) in 1733 as a means of approximating the distribution
function of the binomial probability law for large n. This distribution is important for the fact that under various
conditions (studied in detail later), it closely approximates many other probability distributions – not just the
binomial.

There are physical phenomena which obey the normal probability law exactly. An example is the speed S of a
molecule of mass M in a gas at absolute temperature T . According to Maxwell’s laws of velocity,

S ∼ N(0, σ2 = M/kT ), k = Boltzman’s constant .

The normal distribution function is tabulated for the case when µ = 0 and σ2 = 1. Since this is used often, the
distribution function has its own notation, Φ(·):

Φ(t) = FZ(t) = P(Z ≤ t) =
∫ t

−∞

1√
2π
e−x

2/2 dx.
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z

fZ(z)

0 x

Area Φ(x) under the standard normal curve to the left of x

x .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359

0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753

0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141

0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517

0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224

0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549

0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852

0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133

0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621

1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830

1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015

1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177

1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319

1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441

1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545

1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633

1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706

1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767

2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817

2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857

2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890

2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916

2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936

2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952

2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964

2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974

2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981

2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986

3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990

3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993

3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995

3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997

3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998

60



4 - Probability Laws

Example 4.2.7. Using the table above, we have

Φ(0.39) = 0.6517, Φ(2.99) = 0.9986. �

The density function is denoted by

ϕ(z) = fZ(z) =
1√
2π
e−z

2/2, z ∈ R.

There are two properties owing to to symmetry4:

ϕ(x) = ϕ(−x) ∀x ∈ R

z

ϕ(x)ϕ(−x)

fZ(z)

0 x−x

For x > 0 :

Φ(−x) = 1− Φ(x) ∀x ∈ R

z

fZ(z)

0 x−x

1− Φ(x)Φ(−x)

For x > 0 :

Note that, as with any distribution function FX(·),

P(Z > x) = 1− P(Z ≤ x) = 1− Φ(x)

z

fZ(z)

0 x

P(Z > x) = 1− Φ(x)P(Z ≤ x) = Φ(x)

For x > 0 :

Furthermore, as a rough guide to the table, we have this:

fZ(z)

-3 -2 -1 0 1 2 3
z

34%34%

14%14%
2%2%

0.1%0.1%

4The graphs illustrate these for x > 0, but the formulas are also true for x ≤ 0.
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Theorem 4.2.3. Let X ∼ N(µ, σ2). Then

P(a < X < b) = Φ
(
b− µ
σ

)
− Φ

(
a− µ
σ

)
.

Proof:

P(a < X < b) =
∫ b

a

1
σ
√

2π
e−(x−µ)2/2σ2

dx

=
∫ (b−µ)/σ

(a−µ)/σ

1
σ
√

2π
e−(µ+σy−µ)2/2σ2

σdy y = x−µ
σ ⇔ x = µ+ σy ⇔ dx = σdy

=
∫ (b−µ)/σ

(a−µ)/σ

1√
2π
e−y

2/2 dy

= Φ
(
b− µ
σ

)
− Φ

(
a− µ
σ

)
. definition of Φ(·)

�

Example 4.2.8. Suppose X ∼ N(−2, σ = 3). What is P(−3 < X < 6)?

P(−3 < X < 6) = Φ
(

6− (−2)
3

)
− Φ

(
−3− (−2)

3

)
= Φ

(
8
3

)
− Φ

(
−1

3

)
≈ Φ(2.667)− Φ(−0.333)
= Φ(2.667)− (1− Φ(0.333)) since Φ(−x) = 1− Φ(x)

≈ 0.9962− 1 + 0.6293 from the table

= 62.55%. �

Example 4.2.9. An astronomer is interested in measuring, in light years, the distance from his observatory to
a distant star. Although the astronomer has a measuring technique, he know that, due to changing atmospheric
conditions and normal error, each time a measurement is made it will not yield the exact distance, but merely an
estimate of µ. Assume a measurement X is normally distributed with mean d, the true distance, and a variance =
4 light years. We want to determine P(|X − d| < 1 light year).
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P(|X − d| < 1 light year) = P(−1 < X − d < 1)
= P(d− 1 < X < d+ 1)

= Φ
(
d+ 1− d√

4

)
− Φ

(
d− 1− d√

4

)
Note that σ =

√
4 = 2

= Φ
(

1
2

)
− Φ

(
−1

2

)
= Φ

(
1
2

)
−
(

1− Φ
(

1
2

))
since Φ(−x) = 1− Φ(x)

= 2Φ
(

1
2

)
− 1

≈ 2(0.6915)− 1 from the table

= 38.30%. �

4.2.4 Chi-square Distribution

fX(x) =
xn/2−1

2n/2Γ(n/2)
e−x/2, x > 0; n ∈ Z+.

This is denoted as X ∼ χ2
n and is known as the Chi-square distribution with n degrees of freedom. The pdf above

uses the Gamma function Γ(·), defined as

Γ(n) =
∫ ∞

0

xn−1e−x dx, n > 0.

It can be shown (not here) that Γ(n+ 1) = nΓ(n) and Γ(1/2) =
√
π. Furthermore, if n ∈ Z+, then Γ(n) = (n− 1)!.

x

fX(x)

n

Tables are available for the distribution function FX(·).
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5 Functions of Random Variables

5.1 Functions of One Random Variable

Let X be a random variable. Then X is a function from the sample space S to the real numbers R, as described in
Definition 2.7.1:

A B = X(A)

X(S)

R

S

X(·)

P(·), ΨS PX(·), ΨX

We define

PX(B) = P(A) ∀B ∈ ΨX ,

where A = X−1(B) is the inverse image of B in S. We now define a new random variable Y , where Y = g(X) and
g(·) is a real-valued function:

B C = Y (B)

Y (X(S))

RR

X(S)

Y (·) = g(X(·))

PX(·), ΨX PY (·), ΨY

∀C ∈ ΨY , ∃ a pre-image B ∈ ΨX which is mapped into C by Y . We then define

PY (C) = PX(B) = PX(X ∈ g−1(C)) = PX(X : g(x) ∈ C) ∀C ∈ ΨY .
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5 - Functions of Random Variables

We will first consider the 1-1 transformation g(X) = aX + b, where a > 0 and b ∈ R. We know the distribution of
X and we want to determine the distribution of Y = g(X).

Example 5.1.1. Consider a roulette game. There are 38 divisions:

18 red, 18 black, 2 grey.

Assume that the divisions are equally likely to come up. We bet on red, so that if red comes up, the player doubles
her stake. We thus define the random variable

X =

{
0 if a non-red occurs
1 if a red occurs

.

Thus,

PX({0}) = P(X = 0) =
20
38
,

PX({1}) = P(X = 1) =
18
38
.

Thus, X has a Bernoulli distribution with parameter p = 18
38 , so that

pX(x) =
(

18
38

)x(20
38

)1−x

, x = 0, 1.

Now let Y be the financial outcome of a player who bets $a. What is the distribution of Y ? First let’s form an
equation Y = g(X) that gives Y as a function of X:

Y = 2aX − a.

Given this equation, the next step is to find all possible values of Y , which give the range of Y . Inspection shows
that possible values of Y are a and −a, which makes Y a Bernoulli rv:

0

1

X Y

g(0)

g(1)

−a

a

⇒
pY (−a) = pX(0) =

20
38

,

pY (a) = pX(1) =
18
38

.

Since there is a 1-1 relationship here, it is easy to determine pY (·). However, we can also figure out those values
mathematically:

pY (y) = PY (Y = y) = PX(2aX − a = y) = PX

(
X =

y + a

2a

)
= pX

(
y + a

2a

)
, y = −a, a.

Therefore,

pY (−a) = pX

(
−a+ a

2a

)
= pX(0) =

20
38
,

pY (a) = pX

(
a+ a

2a

)
= pX(1) =

18
38
,

which agree with our previous results. �
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5.1.1 Discrete Case: Linear Transformation

Suppose we have

Y = g(X) = aX + b.

Then just as we showed in the above example,

pY (y) = PY (Y = y) = PX(aX + b = y) = PX

(
X =

y − b
a

)
= pX

(
y − b
a

)
, where

y − b
a
∈ R.

Example 5.1.2. Let X have the pmf

pX(x) = x/15, x ∈ {1, 2, 3, 4, 5}.

Determine the pmf for Y = 2X − 2.

First note that possible values of Y are {0, 2, 4, 6, 8}.

1

2

3

4

5

X Y

0

2

4

6

8

Thus, by the above,

pY (y) = pX

(
y + 2

2

)
=
y + 2

30
,

y + 2
2
∈ {1, 2, 3, 4, 5} ⇔ y ∈ {0, 2, 4, 6, 8}. �

5.1.2 Continuous Case: Linear Transformation

Once again, suppose we have

Y = g(X) = aX + b.

Then

FY (y) = PY (Y ≤ y) = PX(aX + b ≤ y) = PX

(
X ≤ y − b

a

)
= FX

(
y − b
a

)
and thus

fY (y) = F ′Y (y) = F ′X

(
y − b
a

)
· ∂
∂y

(
y − b
a

)
= fX

(
y − b
a

)
· 1
a
.

by the chain rule.
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Example 5.1.3. Assume X ∼ N(µ, σ2). Then

fX(x) =
1

σ
√

2π
e−(x−µ)2/2σ2

, x ∈ R; µ ∈ R; σ > 0.

Suppose Y = X−µ
σ = 1

σX −
µ
σ = aX + b. What is the distribution of Y ? By the above,

fY (y) = σfX

(
y + µ/σ

1/σ

)
= σfX(σy + µ)

= σ · 1
σ
√

2π
e−(σy+µ−µ)2/2σ2

=
1√
2π
e−y

2/2, y ∈ R.

Thus, Y ∼ N(0, 1).

x

fX(x)

µ µ+ σµ− σ

X ∼ N(µ, σ2)

⇒

y

fY (y)

0 1-1

Y ∼ N(0, 1)

Note that the distribution is not complete without also stating a range for y. �

Example 5.1.4. Let X denote the molar concentration of a given compound, and let Y denote the absorbance at
a given wavelength:

Y = aX + b,

where a is a constant which depends on wavelength of a compound. The compound is dissolved in a solvent. The
constant b depends on the solvent. Suppose X ∼ N(µ, σ2). What is the distribution of Y ?

fY (y) =
1
a
fY

(
y − b
a

)
=

1
aσ
√

2π
exp

(
− 1

2σ2

(
y − b
a
− µ

)2
)

=
1

aσ
√

2π
exp
(
− 1

2a2σ2
(y − b− aµ)2

)
.

Thus, Y is normal with mean b+ µa and variance σ2a2.

y

fY (y)

b+ µa b+ µa+ σab+ µa− σa

�
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Example 5.1.5. If X ∼ N(µ, σ2), then Y = X−µ
a ∼ N(0, 1) by Example 5.1.3. Since X = σY + µ,

FX(x) = PX(X ≤ x) = PY (σY+µ ≤ x) = PY

(
Y ≤ x− µ

σ

)
= FY

(
x− µ
σ

)
= Φ

(
x− µ
σ

)
, x ∈ R.

For example, if X ∼ N(2, σ2 = 4), then µ = 2 and σ = 2, and FX(x) = Φ
(
x−2

2

)
. Thus,

FX(3) = Φ
(

3− 2
2

)
= Φ(0.5) ≈ 69.15%

FX(0) = Φ
(

0− 2
2

)
= Φ(−1) ≈ 15.87%

FX(2) = Φ
(

2− 2
2

)
= Φ(0) = 0.5. �

5.1.3 Continuous Case

If X is a discrete rv, then Y = g(X) is also a discrete rv. If X is a continuous rv, then we must put additional
restrictions on the function g(·) in order to have Y = g(X) be a continuous rv. We state the following theorem
without proof:

Theorem 5.1.1. If X is a continuous rv and the function g(·) is differentiable at every real number x and further,
g′(x) 6= 0 except for a finite number of values of x and g′(x) changes sign only a finite number of times for x ∈ R,
then Y = g(X) is a continuous rv. These conditions are sufficient but not necessary.

Now we assume that the hypotheses of theorem 5.1.1 are satisfied. Given a continuous random variable X, finding
the pdf of a 1-1 function Y = g(X) follows a straightforward process:

1. Find

FY (y) = P(Y ≤ y)
= P(g(X) ≤ y)

=

 P(X ≤ g−1(y)) g(·) is increasing

P(X ≥ g−1(y)) g(·) is decreasing


=

 P(X ≤ g−1(y)) g(·) is increasing

1− P(X < g−1(y)) g(·) is decreasing


=

 FX(g−1(y)) g(·) is increasing

1− FX(g−1(y)) g(·) is decreasing

 .

2. Find fY (y) = dFY (y)
dy = agF

′
X(g−1(y))dg

−1(y)
dy (the chain rule) = agfX(g−1(y))dg

−1(y)
dy , where ag =

{
1 g(·) increasing

−1 g(·) decreasing
.

In other words, if Y = g(X) and g(·) is a 1-1 function,

fY (y) = agfX(g−1(y)) · dg
−1(y)
dy

, ag =

{
1 g(·) increasing

−1 g(·) decreasing
. (5.1.1)
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Furthermore, if g(·) is not 1-1, break it up into intervals that are 1-1. For instance, for g(X) = X2, it is 1-1 on
(−∞, 0] and on (0,∞), so that

FY (y) = P(Y ≤ y) = P(X2 ≤ y) = P(−√y ≤ X ≤ √y) = P(X ≤ √y)− P(X < −√y) = FX(
√
y)− FX(−√y).

(5.1.2)

so that we can use the chain rule and get

fY (y) = fX(
√
y) · 1

2
√
y

+ fX(−√y) · 1
2
√
y

(5.1.3)

A good way to think about these problems is to remember the two steps above (i.e., find FY (y), then take the
derivative), so that you’re prepared even if you don’t remember (5.1.1) and/or the assumptions behind it.

Example 5.1.6. Let X ∼ N(µ, σ2), so that

fX(x) =
1

σ
√

2π
e−(x−µ)2/2σ2

, x, µ ∈ (−∞,∞);σ ∈ (0,∞).

Let Y = g(X) = X−µ
σ ⇒ g−1(y) = σy + µ and g(·) is increasing, so that by (5.1.1),

fY (y) = fX(g−1(y))
dg−1(y)
dy

= σfX(σy + µ) =
1√
2π
e−y

2/2,

so that Y ∼ N(0, 1). �

Example 5.1.7. Let X denote the molar concentration of a given compound. Let Y denote the absorbance at a
given wave length:

Y = aX + b ≡ g(X) ⇒ g−1(y) =
y − b
a

.

where a > 0 is a constant which depends on wave length of a compound. This compound is dissolved in a solvent.
The constant b depends on the solvent. Assume X ∼ N(µ, σ2). Since g(·) is increasing, (5.1.1) tells us that

fY (y) = fX(g−1(y))
dg−1(y)
dy

=
1
a
fX

(
y − b
a

)
=

1
aσ
√

2π
exp

(
− 1

2σ2

(
y − b
a
− µ

)2
)

=
1

aσ
√

2π
exp

(
− (y − b− µa)2

2a2σ2

)
,

so that Y ∼ N(b+ µa, σ2a2). �

Example 5.1.8. Assume that X ∼ U(0, 1):

fX(x) = 1, x ∈ [0, 1].

Let Y = X2, which is not 1-1, so that we can’t use (5.1.1) [That is, since g(·) is not 1-1, it doesn’t have an inverse!].
First we realize that the range of Y is from 0 to 1. Thus, for 0 ≤ y ≤ 1, we first find FY (y) and try to break it up:

FY (y) = P(Y ≤ y) = P(X2 ≤ y) = P(−√y ≤ X ≤ √y) = P(X ≤ √y)− P(X < −√y) = FX(
√
y)− FX(−√y)

This is exactly the same equation as (5.1.2) – but we re-write it here because the process is the same for any g(·)
that is not 1-1. Using (5.1.3), we have

fY (y) = fX(
√
y) · 1

2
√
y

+ fX(−√y) · 1
2
√
y

=
1

2
√
y

[1 + 0] =
1

2
√
y
, y ∈ [0, 1]. �
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x

fX(x)

1

1

X ∼ U(0, 1)

⇒

y

fY (y)

1

1
2

Y = X2

Example 5.1.9. Assume that the rv X has the pdf

fX(x) =
λ

2
e−λ|x|, x ∈ R.

Let Y = X2. Then the range of Y is [0,∞), so that we have by (5.1.3) that

fY (y) = fX(
√
y) · 1

2
√
y

+ fX(−√y) · 1
2
√
y

=
λe−λ

√
y

4
√
y

+
λe−λ

√
y

4
√
y

=
λe−λ

√
y

2
√
y

, y ∈ (0,∞).

Note that we started with the range y ∈ [0,∞), but then had to remove the point y = 0 to avoid division be zero.�

Example 5.1.10 (Random Sine Wave). Let Y = a sin(X). The amplitude a is a known positive constant. The
angle X is a continuous r.v. whose pdf is

fX(x) =
1
π
, x ∈

[
−π

2
,
π

2

]
.

Y is a continuous rv, since g′(x) = a cos(x) > 0 ∀x ∈
(
−π2 ,

π
2

)
. Therefore, we can use Theorem 5.1.1. Note that on

this range of X, g(X) = a sin(X) is a 1-1, increasing function (with the range of [−a, a]), so that we can use (5.1.1).
Therefore, g−1(y) = sin−1(ya ), and

fY (y) = fX(g−1(y))
dg−1(y)
dy

=
1

πa
√

1− y2/a2
, y ∈ [−a, a]

where we make use of the fact that d
dx sin−1(u) = 1√

1−u2
du
dx .

If we don’t remember (5.1.1), then we note that −a ≤ y ≤ a when −π2 ≤ x ≤
π
2 . For |y| ≤ a, FY (y) is given by

FY (y) = PY (Y ≤ y) = PX(a sin(X) ≤ y) = PX
(

sin(X) ≤ y

a

)
= PX

(
X ≤ sin−1

(y
a

))
= FX

(
sin−1

(y
a

))
.

Thus, we take the derivative of the above to get

fY (y) = fX

(
sin−1

(y
a

))
· 1
a

(
1− y2

a2

)−1/2

=
(

1
πa

)(
1√

1− y2/a2

)
, |y| ≤ a.

A third way to do this is to note that

FY (y) =
∫ sin−1(y/a)

−π/2

1
π
dx =

1
π

(
sin−1(y/a) + π/2

)
.
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Now take the derivative, and recall that d
dx sin−1(u) = (1− u2)−1/2 du

dx . Thus,

fY (y) =
1
πa

1√
1− y2/a2

, |y| ≤ a. �

5.1.4 Discrete Case

Let Y = g(X) = X2. Then

pY (y) = PY (Y = y) = PX(X2 = y) = PX(X =
√
y or X = −√y) = pX(

√
y) + pX(−√y), y ≥ 0.

Example 5.1.11. Suppose X is discrete with pmf

pX(x) =
x+ 2

15
, x ∈ {−1, 0, 1, 2, 3}.

Then for Y = X2, Y has values of {0, 1, 4, 9}:

−1

0

1

2

3

X Y

0

1

4

9

That is,

pY (0) = pX(0) =
2
15
≈ 13.33%,

pY (1) = pX(
√

1) + pX(−
√

1) =
1
15

+
3
15

=
4
15
≈ 26.67%,

pY (4) = pX(
√

4) = pX(2) =
4
15
≈ 26.67%,

pY (9) = pX(
√

9) = pX(3) =
5
15

= 33.33%. �
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5.2 Functions of Many Random Variables

Let the rv Y be denoted by Y = g(X1, . . . , Xn), where X1, . . . , Xn are jointly distributed random variables.

(x1, . . . , xn)
y

SX = Rn SY = R

g(x1, . . . , xn) = y

We will first restrict our attention to the two-dimensional case:

x1

x2

(x1, x2)
y

SX = R2 SY = R

g(x1, x2) = y

Consider the transformation Y = X1 +X2 = g(X1, X2):

x1

x2

y

SX = R2 SY = R

x1 + x2 = y

As we see from this concrete example, it often isn’t one point (x1, x2) that is mapped to a value of y, but rather a
set of points. That is,

The set {(x1, x2) : x1 + x2 = 6} is mapped to y = 6,
The set {(x1, x2) : x1 + x2 = 8} is mapped to y = 8,
The set {(x1, x2) : x1 + x2 = −3} is mapped to y = −3,

etc.
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5.2.1 Continuous Case: Y = X1 + X2

Let X1 and X2 be jointly continuous rvs, where S = R × R = R2. Let the joint pdf for X1, X2 be fX(x1, x2), and
let Y = X1 +X2. Thus,

FY (y) = PY (Y ≤ y)
= PX1,X2(X1 +X2 ≤ y)
= PX1,X2({x1, x2 : x1 + x2 ≤ y})

=
∫∫

{(x1,x2): x1+x2≤y}

fX(x1, x2) dx1dx2

=
∫ ∞
−∞

∫ y−x2

−∞
fX(x1, x2) dx1dx2

y =
x
1 +
x
2

x1

x2

y =
x
1 +
x
2

x1

x2

dx1

Example 5.2.1. Let X1 and X2 be independent rvs with the pdf

fX(x) =
1
2
e−x/2, x ≥ 0.

Since X1 and X2 are independent, we have

fX(x1, x2) = fX(x1) · fX(x2) =
1
2
e−x1/2 · 1

2
e−x2/2, x1, x2 ≥ 0.

x2

fX1,X2(x1, x2)

x1

0.25

1

2

3

1 2 3
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x1

x2

0 0

0
non-zero

pdf

(y, 0)

(0, y)
y =

x
1 +
x
2

x1

x2

For a practical application of this problem, let Xi denote the life length of a given piece of equipment in months.
We have a spare on hand so that when the equipment fails for the first time, we replace it. The average life length
for each of them is 2 months. Thus, X1 is the life length of the original piece, and X2 is the life length of the spare.
We want to determine the life length of Y = X1 +X2 (which will always be ≥ 0:

FY (y) = PY (Y ≤ y)
= PX1,X2(X1 +X2 ≤ y)
= PX1,X2({(x1, x2) : x1 + x2 ≤ y})

=
∫ y

0

∫ y−x2

0

1
2
e−x1/2 · 1

2
e−x2/2 dx1dx2

=
∫ y

0

1
2
e−x2/2

[∫ y−x2

0

1
2
e−x1/2 dx1

]
dx2

=
∫ y

0

1
2
e−x2/2

[
−e−x1/2

]y−x2

0
dx2

=
∫ y

0

1
2
e−x2/2

(
1− e(y−x2)/2

)
dx2

=
∫ y

0

1
2

(
e−y/2 + e−x2/2

)
dx2

= −y
2
e−y/2 − e−y/2 + 1

Therefore,

fY (y) = F ′Y (y)

= −y
2

(
−1

2
e−y/2

)
+ e−y/2

(
−1

2

)
+

1
2
e−y/2

=
y

4
e−y/2, y ≥ 0. �
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5.2.2 Discrete Case: Y = X1 + X2

Let X1 and X2 be discrete random variables with joint pmf pX(x1, x2). Let Y = X1 +X2. The pmf for Y is

pY (y) = PY (Y = y)
= PX1,X2(X1 +X2 = y)
= PX1,X2({(x1, x2) : x1 + x2 = y})

=
∑

all x1�
pX(x1,y−x1)>0

pX(x1, y − x1).

y =
x
1 +
x
2

x1

x2

y

SX SY

Example 5.2.2. Let the discrete rvs X1 and X2 be independent with pmfs

pXi(xi) =
1
6
, xi ∈ {1, 2, 3, 4, 5, 6}.

Since X1 and X2 are independent,

pX(x1, x2) = pX1(x1)pX2(x2) =
1
6
· 1

6
=

1
36
, x1, x2 ∈ {1, 2, 3, 4, 5, 6}.

Let Y = X1 +X2. Then Y has possible values in {2, 3, . . . , 11, 12}, and

pY (y) =
∑

all x1�
pX(x1,y−x1)>0

pX(x1, y − x1), y ∈ {2, 3, . . . , 12}.

For example,

pY (5) =
∑

all x1�
pX(x1,5−x1)>0

pX(x1, 5− x1) = pX(1, 4) + pX(2, 3) + pX(3, 2) + pX(4, 1) =
4
36
,

pY (7) =
∑

all x1�
pX(x1,7−x1)>0

pX(x1, 7− x1) = pX(1, 6) + pX(2, 5) + pX(3, 4) + pX(4, 3) + pX(5, 2) + pX(6, 1) =
6
36
. �

Now let’s consider a transformation which is not linear.

75



5 - Functions of Random Variables

Example 5.2.3. Let X1 and X2 be independent N(0, 1) rvs:

fX(x1, x2) =
1√
2π
e−x1/2 · 1√

2π
e−x2/2, x1, x2 ∈ R.

Let Y = X1/X2 ⇒ Y ∈ R.

For y < 0,

FY (y) = PX(X1 < yX2 and X2 > 0) + PX(X1 > yX2 and X2 < 0)

=
∫ ∞

0

∫ yx2

−∞
fX(x1, x2) dx1dx2 +

∫ 0

−∞

∫ ∞
yx2

fX(x1, x2) dx1dx2

y =
x
1 /x

2

x1

x2

For y > 0,

FY (y) = PX(X1 < yX2 and X2 > 0) + PX(X1 > yX2 and X2 > 0)

=
∫ ∞

0

∫ yx2

−∞
fX(x1, x2) dx1dx2 +

∫ 0

−∞

∫ ∞
yx2

fX(x1, x2) dx1dx2

y
=
x 1
/x

2

x1

x2

Since the expression for FY (y) is the same for y < 0 as for y > 0, we differentiate this expression for FY (y) to obtain
fY (y) ∀y ∈ R:1

fY (y) =
∫ ∞

0

x2

2π
exp

(
− (yx2)2

2

)
· exp

(
−x

2
2

2

)
dx2 −

∫ 0

−∞

x2

2π
exp

(
− (yx2)2

2

)
· exp

(
−x

2
2

2

)
dx2

=
1

2π

∫ ∞
0

x2 exp
(
−x

2
2

2
(y2 + 1)

)
dx2 −

1
2π

∫ 0

−∞
x2 exp

(
−x

2
2

2
(y2 + 1)

)
dx2

=
2

2π

∫ ∞
0

x2 exp
(
−x

2
2

2
(y2 + 1)

)
dx2

= − 1
π(y2 + 1)

[
−x

2
2(y2 + 1))

2

]∞
0

=
1

π(y2 + 1)
, y ∈ R.

This distribution is called the Cauchy distribution. �

1Recall that

d

dy

∫ b

a

∫ h(y)

g(y)
fX(x1, x2) dx1dx2 =

∫ b

a

[
fX (h(y), x2) · h′(y)

]
dx2 −

∫ b

a

[
fX (g(y), x2) · g′(y)

]
dx2.
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Example 5.2.4. Let X1, X2
iid∼ U(0, 1). Thus, our joint pdf is

fX1X2(x1, x2) = fX1(x1)fX2(x2) = 1[x1∈[0,1]]1[x2∈[0,1]] = 1 for x1, x2 ∈ [0, 1],

so that 0 ≤ X1 ≤ 1 and 0 ≤ X2 ≤ 1. If we make a graph of the points (x1, x2) that have positive (i.e., nonzero)
probability, we see that it is a square from the origin to the point (x1, x2) = (1, 1). This is called our region of
support :

x1

x2

1
2

1

1
2

1

Find the pdf of the functions given:

(a) X1 +X2.

We know that possible values of Y = X1 + X2 are between 0 and 2, inclusive. To find the pdf, we first find
FY (y) and then take its derivative. To start this process, we have

FY (y) = P(Y ≤ y) = P(X1 +X2 ≤ y) = P(X2 ≤ y −X1).

If we graph this, out region is below the line x2 = y − x1. Figure 5.1 shows this region (in dark blue) for the
case where 0 < y ≤ 1 and where 1 < y < 2. Here we see that these two different sets of values for y gives us
two different regions. We will set up our double integrals from these graphs.

If y ∈ [0, 1],

FY (y) = P(X2 ≤ y −X1)

=
∫ y

0

∫ y−x1

0

1 dx2dx1

=
∫ y

0

y − x1 dx1

= y2 − y2

2

=
y2

2
,

so that fY (y) = d
dy

(
y2

2

)
= y.
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x1

x2

x
2 =

y −
x
1

1
2

y 1

1
2

y

1

x1

x2

x
2 =

y −
x
1

y − 1 1
2

y1

1
2

y

1

y ≤ 1 y > 1

Figure 5.1: The area (in dark blue) representing X1 +X2 ≤ y, for y ≤ 1 and y > 1.

If y ∈ (1, 2], we can see by the graph on the right of Figure 5.1 that

FY (y) = P(X2 ≤ y −X1)

=
∫ y−1

0

∫ 1

0

1 dx2dx1 +
∫ 1

y−1

∫ y−x1

0

1 dx2dx1 partition on both sides of x1 = y − 1 as in Figure 5.1

= y − 1 +
∫ 1

y−1

y − x1 dx1

= y − 1 + y − 1
2
− y(y − 1)− (y − 1)2

2

= 2y − 1− y2

2
,

so that fY (y) = d
dy

(
2y − 1− y2

2

)
= 2− y.

Note that for y ∈ (1, 2], since we know that the integral over the region of support (the light blue square) is
equal to 1, we could have also taken the integral of the upper right triangle and subtracted that from 1:
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FY (y) = P(X2 ≤ y −X1)
= 1− P(X2 > y −X1)

= 1−
∫ 1

y−1

∫ 1

y−x1

1 dx2dx1

= 1−
∫ 1

y−1

1− (y − x1) dx1

= 1−
∫ 1

y−1

(1− y) + x1 dx1

= 1−
[
(1− y)x1 +

x2
1

2

]1

y−1

= 1−
(

1− y +
1
2
− (1− y)(y − 1)− (y − 1)2

2

)
= 2y − 1− y2

2
.

Altogether,

fY (y) =


y y ∈ [0, 1]

2− y y ∈ (1, 2]

0 otherwise

,

which integrates to 1 (not shown here).

(b) X1 −X2.

The possible values of Y = X1 −X2 are between -1 and 1, inclusive. Once again, to find the pdf, we first find
FY (y) and then take its derivative. To start this process, we have

FY (y) = P(Y ≤ y) = P(X1 −X2 ≤ y) = P(−X2 ≤ y −X1) = P(X2 ≥ X1 − y).

Note that the direction of the inequality is now switched because we multiplied by a negative number. If we
graph this, out region is now above the line x2 = x1 − y. Figure 5.2 shows this region (in dark blue) for the
case where −1 < y ≤ 0 and where 0 < y < 1. Here we see that these two different sets of values for y gives us
two different regions. As before, we will set up our double integrals from these graphs.

The possible values of Y = X1 −X2 are between -1 and 1, inclusive. If y ≤ 0,

FY (y) = P(X2 ≥ X1 − y)

=
∫ 1+y

0

∫ 1

x1−y
1 dx2dx1

=
∫ 1+y

0

1− (x1 − y) dx1

=
∫ 1+y

0

(1 + y)− x1 dx1

=
[
(1 + y)x1 −

x2
1

2

]1+y

0

=
(1 + y)2

2
.
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x1

x2

x 2
=
x 1
−
y

1
2

1 + y 1

−y

1
2

1

x1

x2

x 2
=
x 1
−
y

y 1
2

y1
−y

1
2

1

y ≤ 0 y > 0

Figure 5.2: The area (in dark blue) representing X2 ≥ X1 − y, for y ≤ 0 and y > 0.

so that fY (y) = d
dy

(
(1+y)2

2

)
= 1 + y.

If y > 0, we can see from the right side of Figure 5.2 that

FY (y) = P(X2 ≥ X1 − y)

=
∫ y

0

∫ 1

0

dx2dx1 +
∫ 1

y

∫ 1

x1−y
dx2dx1

= y +
∫ 1

y

1− (x1 − y) dx1

= y +
∫ 1

y

(1 + y)− x1 dx1

= y +
[
(1 + y)x1 −

x2
1

2

]1

y

= y + (1 + y)− 1
2
−
(

(1 + y)y − y2

2

)
= 2y + 1− 1

2
− (y + y2 − y2

2
)

= y +
1
2
− y2

2
,

so that fY (y) = d
dy

(
y + 1

2 −
y2

2

)
= 1− y.
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As in (a), we could have also taken the integral of the lower right triangle and subtracted it from 1:

FY (y) = P(X2 ≥ X1 − y)
= 1− P(X2 < X1 − y)

= 1−
∫ 1

y

∫ x1−y

0

1 dx2dx1

= 1−
∫ 1

y

x1 − y dx1

= 1−
[
x2

1

2
− yx1

]1

y

= 1−
(

1
2
− y −

(
y2

2
− y2

))
= y +

1
2
− y2

2
.

Altogether,

fY (y) =


1 + y y ∈ [−1, 0]

1− y y ∈ (0, 1]

0 otherwise

,

which integrates to 1.

(c) min(X1, X2).

The possible values of Y = min(X1, X2) are between 0 and 1, inclusive. We don’t need a graph for this one.
For y ∈ [0, 1],

FY (y) = P(Y ≤ y)
= P(min(X1, X2) ≤ y)
= P(X1 ≤ y, X2 ≤ y) + P(X1 ≤ y, X2 ≥ y) + P(X1 ≥ y, X2 ≤ y) mutually exclusive events

= P(X1 ≤ y)P(X2 ≤ y) + P(X1 ≤ y)P(X2 ≥ y) + P(X1 ≥ y)P(X2 ≤ y) independence

= y2 + y(1− y) + (1− y)y since FX(y) = y for X ∼ U(0, 1)

= 2y − y2.

so that fY (y) = d
dy

(
2y − y2

)
= 2− 2y, which can be shown to integrate to 1 over y ∈ [0, 1].

Alternatively, an easier way to compute FY (y) is the following:

FY (y) = P(Y ≤ y)
= P(min(X1, X2) ≤ y)
= 1− P(min(X1, X2) > y)
= 1− P(X1 > y,X2 > y)
= 1− P(X1 > y)P(X2 > y) independence

= 1− (1− y)2
since 1− FX(y) = 1− y for X ∼ U(0, 1)

= 2y − y2.
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x1

x2

x2 = y
x1

y 1
2

1

1
2

1

Figure 5.3: The area (in dark blue) representing X2 ≤ y
X1

.

(d) max(X1, X2).

The possible values of Y = max(X1, X2) are between 0 and 1, inclusive. We don’t need a graph for this one.
For y ∈ [0, 1],

FY (y) = P(Y ≤ y)
= P(max(X1, X2) ≤ y)
= P(X1 ≤ y, X2 ≤ y)
= P(X1 ≤ y)P(X2 ≤ y) independence

= y2. since FX(y) = y for X ∼ U(0, 1)

so that fY (y) = d
dy

(
y2
)

= 2y, which can be shown to integrate to 1 over y ∈ [0, 1].

(e) X1X2.

The possible values of Y = X1X2 are between 0 and 1, inclusive. For y ∈ [0, 1],

FY (y) = P(Y ≤ y)
= P(X1X2 ≤ y)

= P(X2 ≤
y

X1
)

=
∫ y

0

∫ 1

0

dx2dx1 +
∫ 1

y

∫ y/x1

0

dx2dx1 partition on both sides of x1 = y, as in Figure 5.3

= y +
∫ 1

y

y

x1
dx1

= y + y [lnx1]1y
= y − y ln y �

so that fY (y) = d
dy (y − y ln y) = − ln y, which is positive on the domain of y and which can be shown to

integrate to 1 over y ∈ (0, 1]. Note that we should delete the point y = 0 to avoid division by zero.
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5 - Functions of Random Variables

5.3 Transformations from n-space to n-space

Let the n rvs Y1, . . . , Yn be denoted by

Y1 = g1(X1, . . . , Xn) = g1(X),
Y2 = g2(X1, . . . , Xn) = g2(X),

...
Yn = gn(X1, . . . , Xn) = gn(X),

where Y = (Y1, . . . , Yn), X = (X1, . . . , Xn), and where X1, . . . , Xn are jointly distributed random variables.

(x1, . . . , xn) (y1, . . . , yn)

SX = Rn SY = Rn

gi(x1, . . . , xn) = yi

BA

We define probability in the Y space by

PY ((Y1, . . . , Yn) ∈ B) = PX(g−1(B)) = PX(A) = PX((X1, . . . , Xn) ∈ A)).

We need to determine sufficient conditions for Y = (Y1, . . . , Yn) to have a joint continuous distribution and then to
determine the joint pdf of Y1, . . . , Yn.

Example 5.3.1. Transformations from 2-space to 2-space:

Y1 = X1 +X2

Y2 = X1

or
Y1 = X1X2

Y2 = X1 −X2

or
Y1 = X1/X2

Y2 = X2

or
Y1 = X1 sin(X2)
Y2 = X1

. �
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5 - Functions of Random Variables

Theorem 5.3.1. Let X1, . . . , Xn be n random variables with a joint continuous distribution. Let

Y1 = g1(X1, . . . , Xn) = g1(X),
Y2 = g2(X1, . . . , Xn) = g2(X),

...
Yn = gn(X1, . . . , Xn) = gn(X),

be a mapping of Rn to Rn with these properties:

1. The mapping is 1-1.

2. The mapping and its inverse {xi = hi(y1, . . . , yn) : i = 1, . . . , n} are continuous.

3. The n2 partial derivatives ∂xi
∂yj

for i, j ∈ {1, . . . , n} exist and are continuous.

4. The Jacobian

J =
∂(x1, . . . , xn)
∂(y1, . . . , yn)

≡

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x1
∂y1

∂x1
∂y2

· · · ∂x1
∂yn

∂x2
∂y1

∂x2
∂y2

· · · ∂x2
∂yn

...
...

. . .
...

∂xn
∂y1

∂xn
∂y2

· · · ∂xn
∂yn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
6= 0.

Then Y1, . . . , Yn have a joint continuous distribution with the joint pdf given by

fY (y1, . . . , yn) = fX( h1(y1, . . . , yn), . . . , hn(y1, . . . , yn) ) · |J |.

Proof: Advanced multivariate calculus text. �

Example 5.3.2. Suppose X1 and X2 are jointly distributed with the pmf

fX(x1, x2) = 4x1x2, x1, x2 ∈ (0, 1).

We would like to find the joint pdf of X2
1 and X2

2 . First we need to find their inverse functions:

Y1 = X2
1 = g1(X1, X2)

Y2 = X2
2 = g2(X1, X2)

⇒
X1 =

√
Y1 = h1(Y1, Y2)

X2 =
√
Y 2 = h2(Y1, Y2)

.

Note that the range of (Y1, Y2) is the same as for (X1, X2): (0, 1)× (0, 1).
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5 - Functions of Random Variables

x1

x2

1

1

⇒

y1

y2

1

1

The Jacobian is

J =

∣∣∣∣∣∣∣
∂x1
∂y1

∂x1
∂y2

∂x2
∂y1

∂x2
∂y2

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
1

2
√
y1

0

0 1
2
√
y2

∣∣∣∣∣∣∣ =
1

4
√
y1y2

6= 0.

Therefore,

fY1,Y2(y1, y2) = fX1,X2(
√
y1,
√
y2) · |J | = 4

√
y1
√
y2 ·

1
4
√
y1y2

= 1, y1, y2 ∈ (0, 1).

The marginal for Y1 is

fY1(y1) =
∫ 1

0

fY (y1, y2) dy2 =
∫ 1

0

1 dy2 = 1, y1 ∈ (0, 1).

Similarly, the marginal for Y2 is

fY2(y2) = 1, y2 ∈ (0, 1).

Note that Y1 and Y2 are independent, since

fY1,Y2(y1, y2) = fY1(y1) · fY2(y2), y1, y2 ∈ (0, 1). �
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Example 5.3.3. Suppose X1 and X2 are jointly distributed with the pmf

fX(x1, x2) = 3x1, 0 < x2 < x1 < 1.

We want to find the pdf for Y1 = X1 −X2. Again we first need to find their inverse functions:

Y1 = X1 −X2 = g1(X1, X2)
Y2 = X2 = g2(X1, X2)

⇒
X1 = Y1 + Y2 = h1(Y1, Y2)
X2 = Y2 = h2(Y1, Y2)

.

The Jacobian is

J =

∣∣∣∣∣∣∣
∂x1
∂y1

∂x1
∂y2

∂x2
∂y1

∂x2
∂y2

∣∣∣∣∣∣∣ =

∣∣∣∣∣ 1 1

0 1

∣∣∣∣∣ = 1 6= 0.

For the range of (Y1, Y2), note that

0 < x2 < x1 < 1 ⇔ 0 < y2 < y1 + y2 < 1 ⇒ 0 < y1 < 1− y2.

and

0 < x2 < 1 ⇒ 0 < y2 < 1.

Therefore, our regions of integration are

x1

x2

1

1

x 1
=
x 2

⇒

y1

y2

1

1

y
1 =

1−
y
2

For the region indicated,

fY (y1, y2) = fX(y1 + y2, y2) · 1
= 3(y1 + y2),

fY1(y1) =
∫
SY2

fY1,Y2(y1, y2) dy2

=
∫ 1−y1

0

3(y1 + y2) dy2

=
[
3
(
y1y2 +

y2
2

2

)]1−y1

0

= 3
(
y1(1− y1) +

(1− y1)2

2

)
=

3(1− y2
1)

2
, y1 ∈ (0, 1). �
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Example 5.3.4. Let X1 and X2 be independent N(0, 1) rvs:

fX(x1, x2) =
1√
2π
e−x

2
1/2 · 1√

2π
e−x

2
2/2, xi ∈ R.

We want to find the distribution of Y1 = X1
X2

, as we did in Example 5.2.3. Now we will get the same result (as
expected), but from a different method.

Y1 = X1/X2 = g1(X1, X2)
Y2 = X2 = g2(X1, X2)

⇒
X1 = Y1Y2 = h1(Y1, Y2)
X2 = Y2 = h2(Y1, Y2)

.

The Jacobian is

J =

∣∣∣∣∣∣∣
∂x1
∂y1

∂x1
∂y2

∂x2
∂y1

∂x2
∂y2

∣∣∣∣∣∣∣ =

∣∣∣∣∣ y2 y1

0 1

∣∣∣∣∣ = y2, −∞ < y1 <∞.

Our regions of integration are both R2:

x1

x2

⇒

y1

y2

Therefore,

fY (y1, y2) = fX(y1y2, y2) · |y2| =
1

2π
exp

(
− (y1y2)2

2

)
exp

(
−y

2
2

2

)
|y2|, y1, y2 ∈ R
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and so

fY1(y1) =
∫
SY2

fY1,Y2(y1, y2) dy2

=
∫ ∞
−∞

|y2|
2π

exp
(
−y

2
2(1 + y2

1)
2

)
dy2

=
1

2π

∫ 0

−∞
−y2 exp

(
−y

2
2(1 + y2

1)
2

)
dy2 +

1
2π

∫ ∞
0

y2 exp
(
−y

2
2(1 + y2

1)
2

)
dy2

=
1
π

∫ ∞
0

y2 exp
(
−y

2
2(1 + y2

1)
2

)
dy2

= − 1
π(1 + y2

1)

∫ ∞
0

−y2(1 + y2
1) exp

(
−y

2
2(1 + y2

1)
2

)
dy2

= − 1
π(1 + y2

1)

[
exp

(
−y

2
2(1 + y2

1)
2

)]∞
0

= − 1
π(1 + y2

1)
(0− 1)

=
1

π(1 + y2
1)
, y1 ∈ R.

which agrees with our previous result. �
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Example 5.3.5. Let X1, X2, X3
iid∼ Exp(1):

fX(x) = e−x, x > 0.

Let Y1 = X1
X1+X2

, Y2 = X1+X2
X1+X2+X3

, and Y3 = X1 +X2 +X3. We want to show that Y1 ∼ U(0, 1), Y3 ∼ Gamma(α =
3, β = 1)2, and that Y1, Y2, Y3 are all independent.

Y1 =
X1

X1 +X2
= g1(X1, X2, X3)

Y2 =
X1 +X2

X1 +X2 +X3
= g2(X1, X2, X3)

Y3 = X1 +X2 +X3 = g3(X1, X2, X3)

⇒
X1 = Y1Y2Y3 = h1(Y1, Y2, Y3)
X2 = −Y1Y2Y3 + Y2Y3 = h2(Y1, Y2, Y3)
X3 = −Y2Y3 + Y3 = h3(Y1, Y2, Y3)

,

J =

∣∣∣∣∣∣∣∣∣∣

∂x1
∂y1

∂x1
∂y2

∂x1
∂y3

∂x2
∂y1

∂x2
∂y2

∂x2
∂y3

∂x3
∂y1

∂x3
∂y2

∂x3
∂y3

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
y2y3 y1y3 y1y2

−y2y3 −y1y3 + y3 −y1y2 + y2

0 −y3 −y2 + 1

∣∣∣∣∣∣∣∣ = y2y
2
3 .

One can show that y1, y2 ∈ (0, 1) and that y3 > 0, and that

fY (y1, y2, y3) = y2y
2
3e
−y3 , y1, y2 ∈ (0, 1); y3 > 0.

Recall that y3 = x1 + x2 + x3. Therefore,

fY1(y1) =
∫ ∞

0

∫ 1

0

y2y
2
3e
−y3 dy2dy3 = 1, y1 ∈ (0, 1),

fY2(y2) =
∫ ∞

0

∫ 1

0

y2y
2
3e
−y3 dy1dy3 = y2

∫ ∞
0

y2
3e
−y3 dy3 = 2y2, y2 ∈ (0, 1),

fY3(y3) =
∫ 1

0

∫ 1

0

y2y
2
3e
−y3 dy1dy2 = y2

3e
−y3

∫ 1

0

y2 dy2 =
1
2
y2

3e
−y3 , y3 > 0.

Note that fY (y1, y2, y3) = fY1(y1)fY2(y2)fY3(y3). �

2A Gamma distribution is one with has the pdf

fX(x) =
βαxα−1e−βx

Γ(α)
, x > 0.
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Example 5.3.6. Let X1, X2
iid∼ U(1, 4). Find the pdf of Y = X1X2.

Let

Y1 = X1X2 = g1(X1, X2)
Y2 = X2 = g2(X1, X2)

⇒
X1 = Y1/Y2 = h1(Y1, Y2)
X2 = Y2 = h2(Y1, Y2)

.

J =

∣∣∣∣∣∣
∂x1
∂y1

∂x1
∂y2

∂x2
∂y1

∂x2
∂y2

∣∣∣∣∣∣ =

∣∣∣∣∣∣
1
y2
− y1
y2

2

0 1

∣∣∣∣∣∣ =
1
y2
, y2 ∈ (1, 4).

x1

x2

1

1

4

4

⇒

y1

y2

1

1

4

4

16

y1
= 4y2

y 1
=
y 2

1 ≤ x1 ≤ 4 ⇒ 1 ≤ y1

y2
≤ 4 ⇒ y2 ≤ y1 ≤ 4y2,

1 ≤ x2 ≤ 4 ⇒ 1 ≤ y2 ≤ 4.

fX(x1, x2) =
1
3
· 1

3
=

1
9
, 1 ≤ xi ≤ 4,

fY (y1, y2) = fX(y1/y2, y2) · 1
y2

=
1

9y2
, y2 ≤ y1 ≤ 4y2, y2 ∈ [1, 4].

For 1 ≤ y1 ≤ 4,

fY1(y1) =
∫ y1

1

1
9y2

dy2 =
1
9

ln(y1),

For 4 ≤ y1 ≤ 16,

fY1(y1) =
∫ 4

y1/4

1
9y2

dy2 =
1
9

(
ln(4)− ln

(y1

4

))
=

ln(16)− ln(y1)
9
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y1

fY1(y1)

1 4

ln(4)
9

16 �

Overall, when calculating the pdf of a function Y of n random variables, there are two approaches to take:

• Use multiple integrals to compute the distribution function FY (y), then take its derivative fY (y).

• Use Jacobians from n-space to n-space to compute the joint pdf fY (y, y2, . . . , yn) for some r.v.’s Y2, . . . , Yn
that are conveniently defined, then integrate out the n− 1 r.v.’s

The outcome of each of these two approaches will be the same. We shall illustrate this with one example done via
these two different ways.

Example 5.3.7. Let X1, X2
iid∼ Exp(λ). What is the pdf of Y = X1 +X2?

First note that, since X1 and X2 are independent,

fX1X2(x1, x2) = fX(x1)fX(x2) = λe−λx1λe−λx2 = λ2e−λ(x1+x2), x1, x2 > 0. (5.3.4)

Method 1: Integrals

FY (y) = P(X1 +X2 ≤ y)
= P(X2 ≤ y −X1)

=
∫ y

0

∫ y−x1

0

λ2e−λx1−λx2 dx2dx1 by a graph of x1 vs. x2

=
∫ y

0

λe−λx1
[
−e−λx2

]y−x1

0
dx1

=
∫ y

0

λe−λx1

(
1− e−λ(y−x1)

)
dx1

=
∫ y

0

λe−λx1 dx1 −
∫ y

0

λe−λy dx1

=
[
−e−λx1

]y
0
− λe−λy(y)

= 1− e−λy − yλe−λy

Therefore,

fY (y) =
d

dy
[FY (y)] = λe−λy − y(−λ2e−λy)− λe−λy = λ2ye−λy, y > 0,
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so that by inspection (i.e., by comparison to the formula for the pdf of the Gamma distribution), we can conclude
that Y ∼ Gamma(2, λ).

Method 2: Jacobians

Let

Y = X1 +X2

Z = X2

⇔
X1 = Y − Z
X2 = Z

where we note that Y > 0 and 0 < Z < Y (since Z = X2 > 0 and X1 = Y − Z > 0 ⇒ Y > Z). Thus,

J =

∣∣∣∣∣ 1 −1

0 1

∣∣∣∣∣ = 1,

so that, by 5.3.4,

fY Z(y, z) = fX1X2(y − z, z)|J | = λ2e−λ(y−z+z) · 1 = λ2e−λy, y > 0, 0 < z < y.

Therefore,

fY (y) =
∫ y

0

fY Z(y, z) dz =
∫ y

0

λ2e−λy dz = λ2ye−λy, y > 0, �

which, as expected, is the same answer we reached in Method 1 above.
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6 - Mathematical Expectation

6 Mathematical Expectation

6.1 General Definitions

Consider a random variable with a probability law PX(·). If g(x) is a continuous function of x for x ∈ R, then we
wish to define the expected value of g(X) wrt the probability law PX(·), which we will denote as EX [g(X)].

Definition 6.1.1. If X is a discrete rv, then

EX [g(X)] =
∑

all x�
pX(x)>0

g(x)pX(x).

Note that EX [g(X)] exists iff

EX [|g(X)|] =
∑

all x�
pX(x)>0

|g(x)|pX(x) <∞,

i.e., iff the series defining EX [g(X)] is absolutely convergent.

Definition 6.1.2. If X is a continuous rv, then

EX [g(X)] =
∫ ∞
−∞

g(x)fX(x) dx.

EX [g(X)] exists iff

EX [|g(X)|] =
∫ ∞
−∞
|g(x)|fX(x) dx <∞.

Now consider the case where g(x) = x:

Theorem 6.1.1. For any rv X and continuous function g(·) with the rv Y = g(X), EY [Y ] = EX [g(X)].

Proof: Will not be given at this time. See Freeman Chap. 8. The proof depends on absolute convergence. �

The importance of this theorem is that in order to find the expected value of Y , one need not determine the pdf for
Y , since for the continuous case,

EY [Y ] =
∫ ∞
−∞

yfY (y) dy =
∫ ∞
−∞

g(x)fX(x) dx.

Definition 6.1.3. E[X] is called the mean of the rv X (or rather, the probability law associated with X) and is
sometimes denoted as µX .:

If X is discrete, then E[X] = µX =
∑
all x

xpX(x),

If X is continuous, then E[X] = µX =
∫ ∞
−∞

xfX(x) dx.

The mean provides a measure of the midpoint of the probability distribution.
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Assume that for a rv X that E[X] exists. If we take a sequence X1, . . . , Xn of independent observations of X and
form

X̄1 = X1,

X̄2 =
X1 +X2

2
,

X̄3 =
X1 +X2 +X3

3
,

...

X̄n =
X1 + · · ·+Xn

n
,

then lim
n→∞

X̄n = E[X] with probability 1.

Example 6.1.1 (Bernoulli).

E[X] =
1∑

x=0

xpX(x) = 0 · q + 1 · p = p. �

Example 6.1.2 (Uniform (a, b)).

E[X] =
∫ ∞
−∞

xfX(x) dx =
∫ b

a

x

b− a
dx =

1
b− a

[
x2

2

]b
a

=
b2 − a2

2(b− a)
=
b+ a

2
.

x

fX(x)

a a+b
2

b

1
b−a

�
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Example 6.1.3. Let X be the financial outcome of a game for a player. If

E[X]


= 0 the game is called fair,
> 0 the game is called favorable,
< 0 the game is called unfavorable

.

Consider the game of roulette. Use the European wheel with 37 divisions, numbered 0 to 36. Assuming the
P(The number = i)) = 1

37 for i = 0, . . . , 36:
18 of the numbers are black,
18 of the numbers are red,
1 is grey.

.

A player plays against the house. Two of the systems are

a) Bet on a color (red or black). If the color comes up, the player doubles her stake. If the other color or grey
appears, he loses her stake. Let the amount of the bet be $1.00. What are the expected net financial outcomes
of both the player and the house?

If X and Y are the net financial outcomes of the player and the house, respectively, then

E[X] =
18
37
· ($1.00) +

19
37
· (−$1.00) = $− 1

37
,

E[Y ] =
19
37
· ($1.00) +

18
37
· (−$1.00) = $+

1
37
.

b) Bet on a number. If that number appears, the player receives 36 times her stake; otherwise, she loses her stake.
What are the expected net financial outcomes of both the player and the house?

If X and Y are the net financial outcomes of the player and the house, respectively, then

E[X] =
1
37
· ($35.00) +

36
37
· (−$1.00) = $− 1

37
,

E[Y ] =
36
37
· ($1.00) +

1
37
· (−$35.00) = $ +

1
37
.

Note that in both cases, the expected values for the player and for the house add up to zero (as we would expect).�

Example 6.1.4 (Normal (µ, σ2)).

fX(x) =
1

σ
√

2π
e−(x−µ)2/2σ2

, x ∈ R.

Then

E[X] =
∫ ∞
−∞

x

σ
√

2π
e−(x−µ)2/2σ2

dx

=
∫ ∞
−∞

σy + µ

σ
√

2π
e−y

2/2 σdy y ≡ x−µ
σ ⇒ x = σy + µ, dx = σdy

=
σ√
2π

∫ ∞
−∞

ye−y
2/2 dy + µ

∫ ∞
−∞

1√
2π
e−y

2/2 dy︸ ︷︷ ︸
=1

pdf of N(0, 1) rv

=
σ√
2π

[
−e−y

2/2
]∞
−∞︸ ︷︷ ︸

=0

+ µ · 1

= µ. �
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Definition 6.1.4. In general, EX [Xn] is called the nth moment of X. As with E[X], E[Xn] exists iff E[|Xn|] <∞.

Example 6.1.5 (Uniform (a, b)). The second moment of X, where X ∼ U(a, b), is

E[X2] =
∫ b

a

x2 1
b− a

dx =
1

b− a

[
x3

3

]b
a

=
1

3(b− a)
(b3 − a3) =

b2 + ab+ a2

3
. �

The definition of mathematical expectation can be extended to n-dimensional rvs.

Definition 6.1.5. The quantity E [(X − E[X])n] is the nth central moment of X.

Definition 6.1.6. The 2nd central moment of X is called the variance of X1:

σ2
X = σ2[X] = Var(X) = E[(X − µX)2]

Example 6.1.6 (Bernoulli).

E[(X − µX)2] = E[(X − p)2] =
1∑

x=0

(x− p)2pX(x) =
(
−p2

)
· q + (1− p)2 · p = pq(p+ (1− p)) = pq. �

Definition 6.1.7. The positive square root of the variance of X is called the standard deviation of X: σX =√
Var(X).

From Example 6.1.6, the standard deviation of a Bernoulli(p) rv is
√
pq.

The definition of mathematical expectation can be extended to n-dimensional rvs.

Definition 6.1.8. Let g(·) be a function of the n-dimensional rv X = (X1, . . . , Xn).. Then

EX [g(X)] = EX1,...,Xn [g(X1, . . . , Xn)] =


∑
xn

· · ·
∑
x1

g(x1, . . . , xn) · pX(x1, . . . , xn)

∫
xn

· · ·
∫
x1

g(x1, . . . , xn) · fX(x1, . . . , xn) dx1 · · · dxn
.

As in the 1-dimensional case, EX [g(X)] exists iff EX [|g(X)|] <∞.

Example 6.1.7. Let the rv X = (X1, X2), where S = {(x1, x2) : xi = 1, . . . , 6}, as in outcomes on a pair of dice.
Thus,

pX(x1, x2) =
1
36
, (x1, x2) ∈ S.

Let g(x1, x2) = x1 + x2. Then

EX [g(X)] = E[X1 +X2] =
6∑

x2=1

6∑
x1=1

(x1 + x2)pX(x1, x2) =
1
36

[(1 + 1) + (1 + 2) + · · ·+ (6 + 6)] = 7. �

1In physics, σ2 is called the moment of inertia wrt the line perpendicular to the x-axis and passing through the point x = E[X],
y = 0, where E[X] is the center of gravity of unit mass.
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6.2 Properties of Mathematical Expectation

Theorem 6.2.1. EX [c] = c.

Proof: Without loss of generality, we shall only cover the continuous case; the discrete case is similar.

EX [c] =
∫ ∞
−∞

cfX(x) dx = c

∫ ∞
−∞

fX(x) dx = c · 1 = c.

�

Theorem 6.2.2. EX [cg(X)] = cEX [g(X)].

Proof: Homework problem! �

Example 6.2.1 (Normal (µ, σ2)). Let g(x) = x. Then E[6g(X)] = 6E[g(X)] = 6E[X] = 6µ. �

Theorem 6.2.3. E[g1(X) + g2(X)] = E[g1(X)] + E[g2(X)].

Proof: Without loss of generality, we shall only cover the continuous case; the discrete case is similar.

EX [g1(X) + g2(X)] =
∫ ∞
−∞

(g1(x) + g2(x)) fX(x) dx =
∫ ∞
−∞

g1(x)fX(x) dx+
∫ ∞
−∞

g2(x)fX(x) dx = EX [g1(X)] + EX [g2(x)].

�

Theorem 6.2.3 can be extended to n functions {gj(x)} by using mathematical induction:

EX [g1(X) + · · ·+ gn(X)] = EX [g1(X)] + · · ·+ EX [gn(X)].

Example 6.2.2. Let X ∼ N(3, σ2 = 2). If g1(x) = 5x and g2(x) = −4, then

EX [g1(X) + g2(X)] = EX [5X] + EX [−4] = 5 · 3 + (−4) = 11. �

Theorem 6.2.4. E[ag(X) + b] = aE[g(X)] + b

Proof: A direct consequence of Theorems 6.2.2 and 6.2.3 above. �

Note that a special case of Theorem 6.2.4 is g(X) = X, which gives us E[aX + b] = aE[X] + b.
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Theorem 6.2.5. If EX1 [g1(X1)] and EX2 [g2(X2)] exist and if g(x1, x2) = g1(x) + g2(x), then

EX1,X2 [g(X1, X2)] = EX1,X2 [g1(X1) + g2(X2)] = EX1 [g1(X1)] + EX2 [g2(X2)].

Proof: Again, we shall only prove the continuous case, since the discrete case is similar.

EX1,X2 [g(X1, X2)] =
∫ ∞
−∞

∫ ∞
−∞

g(x1, x2)fX1,X2(x1, x2) dx1dx2

=
∫ ∞
−∞

∫ ∞
−∞

[g1(x1) + g2(x2)] fX1,X2(x1, x2) dx1dx2

=
∫ ∞
−∞

g1(x1)
[∫ ∞
−∞

fX1,X2(x1, x2) dx2

]
dx1 +

∫ ∞
−∞

g2(x2)
[∫ ∞
−∞

fX1,X2(x1, x2) dx1

]
dx2

=
∫ ∞
−∞

g1(x1)fX1(x1) dx1 +
∫ ∞
−∞

g2(x2)fX2(x2) dx2

= EX1 [g1(X1)] + EX2 [g2(X2)].

�

As before, Theorem 6.2.5 can be extended to n functions {gj(x)} by using mathematical induction:

EX1,...,Xn [g1(X1) + · · ·+ gn(Xn)] = EX1 [g1(X1)] + · · ·+ EXn [gn(Xn)].

We are usually interested in the special case of gj(xj) = xj :

EX1,...,Xn [X1 + · · ·+Xn] = EX1 [X1] + · · ·+ EXn [Xn].

Note the differences and similarities between Theorems 6.2.3 and 6.2.5. Also note that there are no assumptions of
independence in either of these theorems.

Example 6.2.3. Suppose X1 ∼ N(3, σ2 = 2), X2 ∼ N(6, σ2 = 1) and X3 ∼ U(4, 8). Then by Theorem 6.2.5,

EX1,X2,X3 [X1 +X2 +X3] = E[X1] + E[X2] + E[X3] = 3 + 6 +
4 + 8

2
= 15.

This is true whether or not X1, X2 and X3 are all independent of each other. �

Theorem 6.2.6. Var(X) = E
[
(X − E[X])2

]
= E

[
X2
]
− (E[X])2

Proof: For simpler notation, let µ = E[X]. Then

E
[
(X − E[X])2

]
= E

[
X2 − 2µX + µ2

]
= E

[
X2
]
− 2µE[X] + µ2

= E
[
X2
]
− 2µ2 + µ2

= E
[
X2
]
− µ2

= E
[
X2
]
− E[X]2.

�
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Example 6.2.4 (Bernoulli). Recall that E[X] = p and Var(X) = pq. We can check this formula for the variance
using Theorem 6.2.6:

E
[
X2
]

=
1∑

x=0

x2pX(x) = 02 · q + 12 · p.

Therefore, by Theorem 6.2.6, Var(X) = E
[
X2
]
− (E[X])2 = p− p2 = p(1− p) = pq. �

Example 6.2.5 (Uniform (a, b)). Recall that E[X] = b+a
2 and E

[
X2
]

= b2+ab+a2

3 . Thus,

Var(X) = E
[
X2
]
− (E[X])2

=
b2 + ab+ a2

3
−
(
b+ a

2

)2

=
4(b2 + ab+ a2)− 3(b2 + 2ab+ a2)

12

=
b2 − 2ab+ a2

12

=
(b− a)2

12
. �

Theorem 6.2.7. Var(ag(X) + b) = a2Var(g(X))

Proof: Letting µ = g(X),

Var(ag(X) + b) = E
[
(ag(X) + b− E[ag(X) + b])2

]
= E

[
(ag(X) + b− aµ− b)2

]
Theorem 6.2.4

= E
[
a2 (g(X)− µ)2

]
= a2E

[
(g(X)− µ)2

]
Theorem 6.2.2

= a2Var(g(X)) Definition 6.1.6

�

Note that a special case of Theorem 6.2.7 is g(X) = X, which gives us Var[aX + b] = a2Var[X].

For any rv, the existence of σ2
X implies the existence of E[X]. In fact, it can be proven that the existence of E

[
X2
]

⇒ E[X] exists. However, the reverse is not true. That is,

E[X] <∞ 6⇒ E
[
X2
]
<∞.

Example 6.2.6. This example is from Birnbaum (1962). Let X be a discrete rv with the possible values

xk = k−1/22k/2, k ∈ Z+

with probabilities

pX(xk) =
1
2k
, k ∈ Z+.
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For the expectation, we have

E[X] =
∞∑
k=1

k−1/22−k/2 <
∞∑
k=1

2−k/2 =
∞∑
k=1

(
1√
2

)k
<∞

since the last series is a convergent geometric progression (since 1√
2
< 1). However, for the variance,

Var(X) = E
[
X2
]
− (E[X])2 =

∞∑
k=1

k−1 · 2k · 1
2k
− (E[X])2 =

∞∑
k=1

1
k
− (E[X])2 =∞− (E[X])2 =∞,

which is a divergent harmonic series less a finite number, and hence an infinite number. �

Theorem 6.2.8. Let g1(·) and g2(·) be continuous functions defined over the real line. Then if the rvs X1 and X2

are independent,

EX1,X2 [g1(X1) · g2(X2)] = EX1 [g1(X1)] · EX2 [g2(X2)].

Proof: Continuous case:

E[g1(X1)g2(X2)] =
∫ ∞
−∞

∫ ∞
−∞

g1(x1)g2(x2)fX1,X2(x1, x2) dx1dx2

=
∫ ∞
−∞

∫ ∞
−∞

g1(x1)g2(x2)fX1(x1)fX2(x2) dx1dx2 independence of X1 and X2

=
∫ ∞
−∞

g1(x1)fX1(x1) dx1

∫ ∞
−∞

g2(x2)fX2(x2) dx2

= EX1 [g1(X1)] · EX2 [g2(X2)].

�

Example 6.2.7. Let Xi ∼ N(µi, σ2
i ) for i = 1, 2 and assume that X1 and X2 are independent. By Theorem 6.2.8,

EX1,X2

[
6X1X

2
2

]
= 6EX1 [X1]EX2

[
X2

2

]
= 6µ1

(
σ2

2 − µ2
2

)
. �

Example 6.2.8. Let X1 ∼ N(3, σ2 = 16) be independent of X2 ∼ U(4, 8). By Theorem 6.2.8,

EX1,X2 [X1X2] = 3(6) = 18,

EX1,X2

[
X2

1X2

]
= EX1

[
X2

1

]
EX2 [X2] = (16− 9)(6) = 42. �

Theorem 6.2.9. Let (X1, X2) be a jointly distributed rv. Then

Var(X1 +X2) = Var(X1) + Var(X2) + 2E [(X1 − µ1)(X2 − µ2)] ,

where µi = E[Xi].

Proof:

Var(X1 +X2) = E
[
(X1 +X2 − µ1 − µ2)2

]
= E

[
(X1 − µ1)2 + 2(X1 − µ1)(X2 − µ2) + (X2 − µ2)2

]
= Var(X1) + 2E [(X1 − µ1)(X2 − µ2)] + Var(X2).

�
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Theorem 6.2.10. If the rvs X1 and X2 are independent, then Var(X1 +X2) = Var(X1) + Var(X2).

Proof:

EX1,X2 [(X1 − µ1)(X2 − µ2)] = EX1 [(X1 − µ1)]EX2 [(X2 − µ2)] = (µ1 − µ1)(µ2 − µ2) = 0.

Thus, the proof follows from Theorem 6.2.9. �

Note that Var(X1 +X2) = Var(X1) + Var(X2) 6⇒ independence of X1 and X2.

Example 6.2.9. Let X1 = sin(2πU) and X2 = cos(2πU), where U ∼ U(0, 1). Then

Var(X1) =
∫ 1

0

sin2(2πu) du−
(∫ 1

0

sin(2πu) du
)2

=
1
2
,

Var(X2) =
∫ 1

0

cos2(2πu) du−
(∫ 1

0

cos(2πu) du
)2

=
1
2
,

Var(X1 +X2) = Var (sin(2πU) + cos(2πU)) = 1.

However, X1 and X2 are not independent, since fX1,X2(x1, x2) 6= fX1(x1)fX2(x2). �

6.2.1 Miscellaneous Definitions

Definition 6.2.1. The covariance of X1 and X2 is

EX1,X2 [(X1 − µ1)(X2 − µ2)].

Again, covariance = 0 6⇒ independence.

Definition 6.2.2. The median of an rv X is a number MeX such that

P(X < MeX) ≤ 1
2
, P(X > MeX) ≤ 1

2
.

Note that in general, median 6= mean.

Example 6.2.10. Let X ∼ Exp(1):

fX(x) = e−x, x > 0.

As shown previously, the mean = E[X] = 1. The median of X, MeX , can be computed as follows:

1
2

=
∫ MeX

0

e−x dx =
[
−e−x

]MeX
0

= 1− e−MeX ⇒ e−MeX =
1
2
⇒ MeX = ln(2) ≈ 0.693. �

Definition 6.2.3. The mode of the rv X is a number MoX such that the pdf/pmf has a relative maximum at MoX .

In general, a pdf/pmf is called unimodal if it has just one mode and bimodal if it has two modes.
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Example 6.2.11. This is an example of a bimodal distribution:

x

fX(x)

Mo1 Mo2 �

Definition 6.2.4. If σ2
X exists, then Z = X−E[X]

σX
is the standardized or normalized rv corresponding to X:

E[Z] = 0, Var(Z) = 1.

6.3 Moment Generating Functions and Characteristic Functions

6.3.1 Moment Generating Functions

Definition 6.3.1. If there exists a positive number h > 0 such that for t ∈ (−h, h), EX
[
etX
]

exists (i.e., the integral
or sum is absolutely convergent for t ∈ (−h, h)), then

MX(t) = EX
[
etX
]

is called the moment generating function of the rv X, which is sometimes abbreviated as “mgf”.

Example 6.3.1. Let X ∼ Exp(λ):

fX(x) = λe−λx, x > 0.

Then

MX(t) = EX
[
etX
]

=
∫ ∞

0

etxλe−λx dx

=
∫ ∞

0

λe−x(λ−t) dx

=
λ

λ− t
·
∫ ∞

0

(λ− t)e−x(λ−t) dx︸ ︷︷ ︸
=1

pdf of Exp(λ− t) distribution

=
λ

λ− t
, t < λ. �
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Not every distribution has a mgf, as we shall see in Example 6.3.2. When it exists, however, the mgf is unique and
completely determines the distribution of the rv. This is a very useful property, as well be demonstrated shortly.

The uniqueness of the mgf is based on the theory of transforms (LaPlace Transforms). Indeed, there is a 1-1
correspondence between the following functions:

FX(·) ⇔

{
fX(·)
pX(·)

}
⇔ PX(·) ⇔ MX(·).

If, for example, MX(t) = 1
(1−t)2 , t < 1, then by definition of the mgf,

1
(1− t)2

=
∫ ∞
−∞

etxfX(x) dx, t < 1.

From the theory of LaPlace Transforms (and the fact that a transform for a pdf is unique), we find that

fX(x) = xe−x, x > 0.

Example 6.3.2. Let2

pX(x) =
6

π2x2
, x ∈ Z+.

In the mgf exists, then

MX(t) = E
[
etX
]

=
∞∑
x=1

etx
6

π2x2
.

The ratio test can be used to show that this series diverges of t > 0. Thus, @h > 0 � ∀t ∈ (−h, h), MX(t) exists.
Accordingly, this pmf pX(·) does not have a mgf. �

Where does the name moment generating function come from?

The existence of MX(t) for t ∈ (−h, h) ⇒ derivatives of all orders exist at t = 0:

dMX(t)
dt

≡M ′X(t) =


∫ ∞
−∞

xetxfX(x) dx X is continuous∑
x

xetxpX(x) X is discrete
.

Let t = 0. Then

M ′X(0) =


∫ ∞
−∞

xfX(x) dx X is continuous∑
x

xpX(x) X is discrete

 = EX [X].

Similarly,

d2MX(t)
dt2

≡M ′′X(t) =


∫ ∞
−∞

x2etxfX(x) dx X is continuous∑
x

x2etxpX(x) X is discrete
.

2Recall that

∞∑
n=1

1

n2
=
π2

6
.
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so that

M ′′X(0) =


∫ ∞
−∞

x2fX(x) dx X is continuous∑
x

x2pX(x) X is discrete

 = EX [X2].

Thus, Var(X) = E
[
X2
]
− (E[X])2 = M ′′X(0) − (M ′X(0))2. Generally, M (m)

X (0) = E [Xm], and the derivatives of
MX(t) generate the moments of the distribution of X.

Example 6.3.3. Let X ∼ Exp(λ). Then for t < λ,

MX(t) =
λ

λ− t
=
(

1− t

λ

)−1

M ′X(t) = −
(

1− t

λ

)−2(
− 1
λ

)
⇒ M ′X(0) =

1
λ

= E [X]

M ′′X(t) = 2
(

1− t

λ

)−3(
− 1
λ

)2

=
2
λ2

(
1− t

λ

)−3

⇒ M ′′X(0) =
2
λ2

= E
[
X2
]

so that Var(X) = M ′′X(0)− (M ′X(0))2 = 2
λ2 −

(
1
λ

)2 = 1
λ2 . For the general term of the mgf,

M
(m)
X (t) =

m!
λm

(
1− t

λ

)−(m+1)

⇒ M
(m)
X (0) =

m!
λm

= E [Xm] . �

Theorem 6.3.1. Let X1 and X2 be independent rvs whose mgfs exist. Then for Y = X1 +X2,

MY (t) = MX1(t) ·MX2(t).

Proof:

MY (t) = EY
[
etY
]

= EX1X2

[
et(X1+X2)

]
=
∗

EX1X2

[
etX1etX2

]
= EX1

[
etX1

]
EX2

[
etX2

]
= MX1(t) ·MX2(t).

where we use Theorem 6.2.8 in step ∗. �

By induction, we can prove (not shown here) that if X1, . . . , Xn are independent rvs and if Y = Y1 + · · ·+ Yn, then

MY (t) =
n∏
i=1

MXi(t).

Example 6.3.4. Let Xi
ind∼ P(λi), i = 1, 2:

pXi(xi) =
e−λiλxii
xi!

, xi ∈ Z∗.

Then

MXi(t) =
∞∑
x=0

etxλxi e
−λi

x!
= e−λi

∞∑
x=0

(etλi)x

x!
= e−λieλie

t

= eλi(e
t−1).

Let Y = X1 +X2. Then

MY (t) = MX1(t)MX2(t) = eλ1(et−1)eλ2(et−1) = e(λ1+λ2)(et−1)).

This is the mgf for a Poisson rv with parameter λ1 + λ2. By the uniqueness of the mgf, Y must then have a Poisson
distribution with parameter λ1 + λ2. �
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Theorem 6.3.2. If Y = aX + b, where a, b ∈ R and if the mgf’s exist, then

MY (t) = ebtMX(at).

Proof:

MY (t) = EY
[
etY
]

= EX
[
et(aX+b)

]
= EX

[
eatX+bt

]
= EX

[
ebteatX

]
= ebtEX

[
eatX

]
= ebtMX(at).

�

Example 6.3.5. Let Xi
ind∼ N(µi, σ2

i ), i = 1, 2. It can be shown (not here) that MXi(t) = exp(µit+ σ2
i t

2/2).

1. Let Y = X1 +X2. Then

MY (t) = MX1(t) ·MX2(t) = exp(µ1t+ σ2
1t

2/2) · exp(µ2t+ σ2
2t

2/2) = exp((µ1 + µ2)t+ (σ2
1 + σ2

2)t2/2).

This is the mgf for a N(µ1 + µ2, σ
2
1 + σ2

2) rv.

2. Let Y = a1X1 + a2X2. Then

MY (t) = Ma1X1(t) ·Ma2X2(t)
= MX1(a1t) ·MX2(a2t)

= exp(µ1a1t+ σ2
1a

2
1t

2/2) · exp(µ2a2t+ σ2
2a

2
2t

2/2)

= exp((a1µ1 + a2µ2)t+ (a2
1σ

2
1 + a2

2σ
2
2)t2/2).

This is the mgf for a N(a1µ1 + a2µ2, a
2
1σ

2
1 + a2

2σ
2
2) rv. �

Example 6.3.6. Let X1 ∼ N(−2, σ2 = 9) and X2 ∼ N(1, σ2 = 16).

1. Let Y = X1 +X2. then Y ∼ N(−2 + 1, σ2 = 9 + 16) = N(−1, σ2 = 25).

2. Let Y = 2X1 − 3X2. Then Y ∼ N(2 · (−2)− 3 · 1, σ2 = 22 · 9 + 32 · 16) = N(−7, σ2 = 180). �

Theorem 6.3.3. Let X1, . . . , Xn
ind∼ N(µj , σ2

j ). Let kj ∈ R for j = 1, . . . , n. Then

Y = k1X1 + · · ·+ knXn ∼ N

 n∑
j=1

kjµj , σ
2 =

n∑
j=1

k2
jσ

2
j

 .

Proof: Homework problem. �

Example 6.3.7. Let X1, . . . , X10
iid∼ N(2, 9). What is the distribution of Y = X̄10 = X1+···+X10

10 ?

Here kj = 1
10 ∀j, and

10∑
j=1

kjµj =
10∑
j=1

1
10
· 2 = 10 · 1

10
· 2 = 2,

10∑
j=1

k2
jσ

2
j =

10∑
j=1

(
1
10

)2

· 9 = 10 ·
(

1
10

)2

· 9 =
9
10

= 0.9,

so that Y = X̄10 ∼ N(2, σ2 = 0.9). �
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6.3.2 Characteristic Functions

Definition 6.3.2. If X is an rv, then EX
[
eitX

]
= φX(t) is called the characteristic function for the rv X.

The main advantage of the characteristic function over the moment generating function is that the characteristic
function always exists. First we state a few facts about complex numbers:

A complex number z consists of a real component x and an imaginary component y:

z = x+ iy

The complex plane C consists of the xy plane representing the real and imaginary components.

Facts:

1. |z| = |x+ iy| =
√
x2 + y2.

2. x = r cos(θ), y = r sin(θ).

3. z = r cos(θ) + ir sin(θ) = r (cos(θ) + i sin(θ)) .

4. |z| = r
√

cos2(θ) + sin2(θ) = r.

5. For eiθ = cos(θ) + i sin(θ), eiθ = 1 for θ = 0.

6. DeMoivre’s Theorem:
(
eiθ
)n = einθ = cos(nθ) + i sin(nθ).

x

iy

(x0, y0)

r

z0 = x0 + iy0

x0

y0

Theorem 6.3.4. φX(t) always exists ∀t.

Proof:

∀x ∈ R,
∣∣eitx∣∣ = |cos(tx) + i sin(tx)| =

√
cos2(tx) + sin2(tx) =

√
1 = 1 ⇒ E

[∣∣eitX ∣∣] = E[1] = 1 <∞.

�

Example 6.3.8. Let X ∼ Exp(λ). Then

φX(t) = EX
[
eitX

]
=
∫ ∞

0

λeitxe−λx dx =
λ

λ− it
=
(

1− it

λ

)−1

.

Recall that MX(t) =
(
1− t

λ

)−1. �

Example 6.3.9. Let X ∼ P(λ). Then

φX(t) =
∞∑
x=0

eitx
λxe−λ

x!
= eλ(e

it−1),

MX(t) = eλ(e
t−1). �

From their definitions, we might assume that φX(t) = MX(it) when MX(·) exists. This is in fact true, but the proof
is not simple, as it depends on analytic concentration from complex variable theory. Thus, we state it here without
proof.

As for mfgs, we state the following theorems without proof:
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6 - Mathematical Expectation

Theorem 6.3.5. If two rvs X and Y have the same characteristic functions, then FX(x) = FY (x) ∀x ∈ R.

∃ a 1-1 correspondence among

φX(·) ⇔ FX(·) ⇔

{
fX(·)
pX(·)

}
⇔ PX(·) ⇔ MX(·) (if it exists).

Theorem 6.3.6. LetX1, . . . , Xn be independent real-valued rvs. If Y = X1+· · ·+Xn, then φX(t) = φX1(t) · · ·φXn(t).

Theorem 6.3.7. If X is a real-valued rv and a, b ∈ R, then φaX+b(t) = eitbφX(at).

Theorem 6.3.8. If the rv X has an nth moment, then E [Xn] =
1
in
φ

(n)
X (0).
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7 - Jointly Distributed Random Variables, Continued

7 Jointly Distributed Random Variables, Continued

7.1 Conditional Distribution

First we will review some basic facts about the jointly distributed rvs. Let fX(x1, x2) be the joint pdf for rvs X1

and X2. Then

• P(a ≤ X1 ≤ b, −∞ < X2 ≤ c) =
∫ c

−∞

∫ b

a

fX(x1, x2) dx1dx2.

• FX(x1, x2) =
∫ x2

−∞

∫ x1

−∞
fX(y1, y2) dy1dy2.

• fX1(x1) =
∫ ∞
−∞

fX(x1, x2) dx2, fX2(x2) =
∫ ∞
−∞

fX(x1, x2) dx1.

Likewise, if pX(x1, x2) is the joint pmf for the rvs X1 and X2, then

• P(a < X1 ≤ b, c ≤ X2 ≤ d) =
d∑

x2=c

b∑
x1=a+1

pX(x1, x2).

• FX(x1, x2) =
x2∑

y2=−∞

x1∑
y1=−∞

pX(y1, y2).

• pX1(x1) =
∞∑

x2=−∞
pX(x1, x2), pX2(x2) =

∞∑
x1=−∞

pX(x1, x2).

We now want to discuss the notion of a conditional pdf. We will consider two cases: The discrete and the continuous.

7.1.1 Discrete Case

Let X1 and X2 be jointly distributed rvs with pmf pX(x1, x2) and marginal pdfs pX1(x1) and pX2(x2). Let

A1 = {(x1, x2) : x1 = a1, −∞ < x2 <∞} ⇒ P(A1) = P(X1 = a1) = pX1(a1),
A2 = {(x1, x2) : x2 = a2, −∞ < x1 <∞} ⇒ P(A2) = P(X2 = a2) = pX2(a2).

If we know that pX1(a1) > 0, then we know that

P(X2 = a2 | X1 = a1) = P(A2|A1) =
P(A2A1)

P(A1)
=

P(X1 = a1, X2 = a2)
P(X1 = a1)

=
pX(a1, a2)
pX1(a1)

.

Note that the quantity pX(x1,x2)
pX1 (x1) , for x1 held constant, is a pmf, since

pX(x1, x2)
pX1(x1)

≥ 0 ∀x2 ∈ R,

and
∞∑

x2=−∞

pX(x1, x2)
pX1(x1)

=
1

pX1(x1)

∞∑
x2=−∞

pX(x1, x2) =
1

pX1(x1)
pX1(x1) = 1.
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7 - Jointly Distributed Random Variables, Continued

The conditional pmf of X2 given X1 = x1 is denoted as pX2|X1(x2|x1) and defined as the quantity

pX2|X1(x2|x1) =
pX(x1, x2)
pX1(x1)

for pX1(x1) > 0.

Similarly, pX1|X2(x1|x2) = pX(x1,x2)
pX2(x2)

for pX2(x2) > 0. Note that, as with any pmf,

P(a ≤ X1 ≤ b | X2 = x2) =
b∑

x1=a

pX1|X2(x1|x2),

P(c ≤ X2 ≤ d | X1 = x1) =
d∑

x2=c

pX2|X1(x2|x1).

Example 7.1.1. Let

pX(x1, x2) =
x1 + x2

21
, x1 ∈ {1, 2, 3}, x2 ∈ {1, 2}.

Then

pX1(x1) =
2∑

x2=1

x1 + x2

21
=

1
21

[(x1 + 1) + (x1 + 2)] =
1
21

(2x1 + 3) ,

pX2(x2) =
3∑

x1=1

x1 + x2

21
=

1
21

[(1 + x2) + (2 + x2) + (3 + x2)] =
1
21

(3x1 + 6) .

Are X1 and X2 independent?

Recall that we may compute P(X1 = 2) from the joint or marginal pmfs. That is,

P(X1 = 2) =
2∑

x2=1

pX(2, x2) = pX(2, 1) + pX(2, 2) =
3
21

+
4
21

=
7
21
,

P(X1 = 2) = pX1(2) =
2(2) + 3

21
=

7
21
.

The conditional pmfs are given by

pX1|X2(x1|x2) =
pX(x1, x2)
pX2(x2)

=
(x1 + x2)/21
(3x2 + 6)/21

=
x1 + x2

3x2 + 6
, x1 ∈ {1, 2, 3};

pX2|X1(x2|x1) =
pX(x1, x2)
pX1(x1)

=
(x1 + x2)/21
(2x1 + 3)/21

=
x1 + x2

2x1 + 3
, x2 ∈ {1, 2}. �

7.1.2 Continuous Case

If X1 and X2 are continuous rvs with joint pdf fX(x1, x2) and marginal pdfs fX1(x1) and fX2(x2), then for fX1(x1) >
0, we define

fX2|X1(x2|x1) =
fX(x1, x2)
fX1(x1)

.

This definition is motivated by (7.1.1) for discrete rvs. The fact that fX2|X1(x2|x1) is a pdf is easily shown, since for
fX1(x1) > 0,

fX2|X1(x2|x1) =
fX(x1, x2)
fX1(x1)

≥ 0 ∀x2 ∈ R,
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7 - Jointly Distributed Random Variables, Continued

and ∫ ∞
−∞

fX2|X1(x2|x1) dx2 =
∫ ∞
−∞

fX(x1, x2)
fX1(x1)

dx2 =
1

fX1(x1)

∫ ∞
−∞

fX(x1, x2) dx2 =
1

fX1(x1)
fX1(x1) = 1.

Furthermore,

P (a ≤ X2 ≤ b | X1 = x1) =
∫ b

a

fX2|X1(x2|x1) dx2.

Example 7.1.2. Let X1 and X2 have the joint pdf

fX(x1, x2) = 2, 0 < x1 < x2 < 1.

The marginal pdfs are

fX2(x2) =
∫ x2

0

2 dx1 = 2x2, x2 ∈ (0, 1);

fX1(x1) =
∫ 1

x1

2 dx2 = 2(1− x1), x1 ∈ (0, 1).

The conditional pdf of X1 given X2 = x2 is

fX1|X2(x1|x2) =
fX(x1, x2)
fX2(x2)

=
2

2x2
=

1
x2
, 0 < x1 < x2 < 1.

Therefore,

P
(
0 < X1 <

1
2 | x2 = 3

4

)
=
∫ 1

2

0

fX1|X2

(
x1

3
4

)
dx1 =

∫ 1
2

0

1
3/4

dx1 =
∫ 1

2

0

4
3
dx1 =

2
3
,

P
(
0 < X < 1

2

)
=
∫ 1

2

0

fX1(x1) dx1 =
∫ 1

2

0

2(1− x1) dx1 =
3
4
. �

7.2 Conditional Expectation

Let g(X2) be a function of X2. Then we define

EX2|X1 [g(X2)|X1 = x1] =
∫ ∞
−∞

g(x2)fX2|X1(x2|x1) dx2

as the conditional expectation of g(X2) givenX1 = x1. If they exist, E[X2|X1 = x1] is the mean and E
[
(X2 − E[X2|X1 = x1])2

]
is the variance of the conditional distribution of X2 given X1 = x1.

Similarly, we define the mean and variance of the conditional distribution of X1 given X2 = x2.1

1Note that E[X1|X2 = x2] is called the regression of X1 on X2, and similarly E[X2|X1 = x1] is the regression of X2 on X1.

110



7 - Jointly Distributed Random Variables, Continued

Example 7.2.1 (Continuation of Example 7.1.2).

fX(x1, x2) = 2, 0 < x1 < x2 < 1;

fX1(x1) = 2(1− x1), x1 ∈ (0, 1); fX2(x2) = 2x2, x2 ∈ (0, 1).

fX1|X2(x1|x2) dx1 =
1
x2
, 0 < x1 < x2 < 1.

E[X1|x2] =
∫ ∞
−∞

x1fX1|X2(x1|x2) dx1 =
∫ x2

0

x1 ·
1
x2

dx1 =
x2

2
, 0 < x2 < 1.

E
[
(X1 − E[X1|x2])2 |x2

]
=
∫ x2

0

(
x1 − x2

2

)2 · 1
x2

dx1 =
x2

2

12
, 0 < x2 < 1. �

All the definitions given above can be generalized to the case of n variables. We will discuss this generalization for
continuous rvs. The generalization for discrete rvs is analogous.

Suppose we have joint pdf fX(x1, . . . , xn).

fX1 =
∫ ∞
−∞
· · ·
∫ ∞
−∞

fX(x1, . . . , xn) dx2dx3 · · · dxn,

fX2 =
∫ ∞
−∞
· · ·
∫ ∞
−∞

fX(x1, . . . , xn) dx1dx3 · · · dxn,

...

fXi =
∫ ∞
−∞
· · ·
∫ ∞
−∞

fX(x1, . . . , xn) dx1dx2 . . . dxi−1dxi+1 · · · dxn.

Furthermore,

fX1,X4,X5(x1, x4, x5) =
∫ ∞
−∞
· · ·
∫ ∞
−∞

fX(x1, . . . , xn) dx2dx3dx6dx7 · · · dxn.

If fX1(x1) > 0, then we define

fX2,...,Xn|X1(x2, . . . , xn|x1) =
fX1,...,Xn(x1, . . . , xn)

fX1(x1)
,

or in general, if fXj (xj) > 0, then

fX1,...,Xj−1,Xj+1,...,Xn|Xj (x1, . . . , xj−1, xj+1, . . . , xn|xj) =
fX1,...,Xn(x1, . . . , xn)

fXj (xj)
.

We can also define

fX1,X3,X5|X2,X4(x1, x3, x5|x2, x4) =
fX(x1, . . . , xn)
fX2,X4(x2, x4)

.

If it exists (i.e., if fX1(x1) > 0 and the integral converges absolutely),

E [g(X2, . . . , Xn)|x1] =
∫ ∞
−∞
· · ·
∫ ∞
−∞

g(x2, . . . , xn)fX2,...,Xn|X1(xs, . . . , xn|x1) dx2 · · · dxn.
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7 - Jointly Distributed Random Variables, Continued

Example 7.2.2. This example is from Parzen (1960, p. 340). Consider the decay of particles in a cloud chamber
(or, similarly, the breakdown of equipment or the occurrence of accidents).

Assume that the time X of any particular particle to decay is a rv obeying an exponential probability law with
parameter y. However, it is not assumed that the value of y is the same for all particles. Rather, it is assumed that
there are particles of different types (or equipment of different types or individuals of different accident proneness).
More specifically, it is assumed that for a particle randomly selected from the cloud chamber, the parameter y is a
particular value of a random value obeying a Gamma probability law with pdf:

fY (y) =
βα

Γ(α)
yα−1e−βy, y > 0,

where α and β are positive constants characterizing the experimental conditions under which the particles are
observed.

The assumption that the time X of a particle to decay obeys an exponential law is

fX|Y (x|y) = ye−xy, x > 0.

Since fY (y) and fX|Y (x|y) are assumed known, we can compute fX,Y (x, y) = fX|Y (x|y)fY (y) and hence find the
marginal law for the time to decay X (of a particle selected at random):

fX(x) =
∫ ∞
−∞

fX,Y (x, y) dy

=
∫ ∞
−∞

fX|Y (x|y)fY (y) dy

=
∫ ∞

0

ye−xy
βα

Γ(α)
yα−1e−βy dy

=
∫ ∞

0

βα

Γ(α)
yαe−y(β+x) dy

=
αβα

(β + x)α+1

∫ ∞
0

1
αΓ(α)

(β + x)α+1yαe−y(β+x) dy︸ ︷︷ ︸
=1

=
αβα

(β + x)α+1
. �

7.3 Joint Moment Generating Functions

Definition 7.3.1. If fX,Y (x, y) is the joint pdf/pmf of X and Y and if E
[
et1X+t2Y

]
exists for t1 ∈ (−h1, h1) and

t2 ∈ (−h2, h2) for some h1, h2 > 0, then

MX,Y (t1, t2) = E
[
et1X+t2Y

]
is called the moment generating function for the joint distribution of X and Y .
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Example 7.3.1. Let X and Y be continuous rvs with joint pdf

fX,Y (x, y) = e−y, 0 < x < y <∞.

Thus,

MX,Y (t1, t2) =
∫ ∞

0

∫ ∞
x

et1x+t2ye−y dydx

=
∫ ∞

0

∫ ∞
x

et1xey(t2−1) dydx

=
∫ ∞

0

et1x
∫ ∞
x

ey(t2−1) dydx

=
1

t2 − 1

∫ ∞
0

et1x
[
ey(t2−1)

]∞
x

dx

= − 1
t2 − 1

∫ ∞
0

et1x+t2x−x dx

=
1

1− t2 − 1

∫ ∞
0

e−x(1−t1−t2) dx

=
1

(1− t2)(1− t1 − t2)

∫ ∞
0

(1− t1 − t2)e−x(1−t1−t2) dx︸ ︷︷ ︸
=1

pdf for Exp(λ = 1− t1 − t2) distribution

=
1

(1− t2)(1− t1 − t2)
. �

As with the univariate case, MX,Y (t1, t2) completely determined the joint distribution of X and Y . Note that

MX,Y (t1, 0) = EX,Y
[
et1X

]
=
∫ ∞
−∞

∫ ∞
−∞

et1xfX,Y (x, y) dydx =
∫ ∞
−∞

et1xfX(x) dx = MX(t1).

Similarly, MX,Y (0, t2) = MY (t2). Therefore,

∂MX,Y (t1, 0)
∂t1

∣∣∣∣
t1=0

=
∂MX(t1)
∂t1

∣∣∣∣
t1=0

= E[X] ⇒ ∂MX,Y (0, 0)
∂t1

= E[X].

Similarly, ∂MX,Y (0,0)
∂t2

= E[Y ]. By the same reasoning,

E
[
X2
]

=
∂2MX,Y (0, 0)

∂t21
⇒ Var(X) =

∂2MX,Y (0, 0)
∂t21

−
(
∂MX,Y (0, 0)

∂t1

)2

and analogously for E
[
Y 2
]

and Var(Y ). The same logic can also be used to show

E [(X − µX)(Y − µY )] =
∂2MX,Y (0, 0)

∂t1∂t2
−
(
∂MX,Y (0, 0)

∂t1

)(
∂MX,Y (0, 0)

∂t2

)
.
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Note that in general,

∂k+mMX,Y (0, 0)
∂tk1∂t

m
2

=
∂k+mMX,Y (t1, t2)

∂tk1∂t
m
2

∣∣∣∣
t1=0
t2=0

=
∫ ∞
−∞

∫ ∞
−∞

xkymet1x+t2yfX,Y (x, y) dxdy
∣∣∣∣
t1=0
t2=0

=
∫ ∞
−∞

∫ ∞
−∞

xkymfX,Y (x, y) dxdy

= E
[
XkY m

]
.

Example 7.3.2 (Continuation of Example 7.3.1). Earlier, we showed thatMX,Y (t1, t2) = 1
(1−t2)(1−t1−t2) . From

this,

MX,Y (0, t2) =
1

(1− t2)2
⇒ ∂MX,Y (0, t2)

∂t2

∣∣∣∣
t2=0

=
2

(1− t2)3

∣∣∣∣
t2=0

= 2 = E[Y ],

MX,Y (t1, 0) =
1

1− t1
⇒ ∂MX,Y (t1, 0)

∂t2

∣∣∣∣
t1=0

=
1

(1− t1)2

∣∣∣∣
t1=0

= 1 = E[X].

Furthermore,

∂2MX,Y (t1, t2)
∂t1∂t2

= 2(1− t1 − t2)−3(1− t2)−1 + (1− t1 − t2)−2(1− t2)−2 ⇒ ∂2MX,Y (t1, t2)
∂t1∂t2

∣∣∣∣t1=0
t2=0

= 2 + 1 = 3 = E[XY ].

Therefore,

Cov(X,Y ) = E[XY ]− E[X]E[Y ] = 3− 2 = 1. �

Theorem 7.3.1. If the rvs X1 and X2 have mgf MX1,X2(t1, t2), then X1 and X2 are independent iff

MX1,X−2(t1, t2) = MX1,X2(t1, 0) ·MX1,X2(0, t2) = MX(t1)MY (t2).

Proof: Homework problem! �

Example 7.3.3 (Continuation of Example 7.3.2).

MX,Y (t1, t2) =
1

(1− t− 1− t2)(1− t2)
, MX,Y (0, t2) =

1
(1− t2)2

, MX,Y (t1, 0) =
1

1− t1
.

Therefore, X and Y are not independent. �

114



7 - Jointly Distributed Random Variables, Continued

7.4 Order Statistics

Let X1, X2, . . . , Xn be iid from a continuous distribution with pdf fX(x). Since they are iid, their joint distribution
is

fX1X2···Xn(x1, x2, . . . , xn) = fX1(x1)fX2(x2) · · · fXn(xn) by independence

= fX(x1)fX(x2) · · · fX(xn) identical distribution

=
n∏
i=1

fX(xi)

Now let us define the random variables Y1, Y2, . . . , Yn, where Yi = the ith smallest value of {X1, X2, . . . , Xn}. Thus,
Y1 < Y2 < · · · < Yn. Note that

• Yi is commonly denoted as X(i).

• Since this is a continuous distribution, P(Yi = a) = 0 for any value a. Therefore, for i 6= j,

P(Yi = Yj) = P([Yi = a] ∩ [Yj = a] for some a) =
∫ ∞
−∞

P(Yi = a)P(Yj = a)︸ ︷︷ ︸
=0

da = 0.

As an example,

X1 = 10

X2 = 3

X3 = 7

X4 = 2

X5 = 8

⇒

Y1 = 2

Y2 = 3

Y3 = 7

Y4 = 8

Y5 = 10

However, note that we also have

X1 = 7

X2 = 8

X3 = 2

X4 = 10

X5 = 3

⇒

Y1 = 2

Y2 = 3

Y3 = 7

Y4 = 8

Y5 = 10

Generally, any permutation of the values of (X1, X2, . . . , Xn) is mapped to the same (Y1, Y2, . . . , Yn). Since there are
n! such permutations,

fY1,Y2,...,Yn(y1, y2, . . . , yn) = n! · (pdf of any one of those permutations)
= n! · (pdf of X1 = y1, X2 = y2, . . . , Xn = yn) one such permutation

= n! · fX1X2···Xn(y1, y2, . . . , yn)

= n!
n∏
i=1

fX(yi)

However, it is more useful to have the pdf for one of the order statistics, rather than the above formula for all of
them at once.
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Example 7.4.1. Let X1, X2, X3
iid∼ Exp(1). Then fXi(xi) = e−xi , xi > 0. For Yi = X(i),

fY1(y1) =
∫ ∞
y1

∫ y3

y1

fY1,Y2,Y3(y1, y2, y3) dy2dy3 since 0 < y1 < y2 < y3 <∞

=
∫ ∞
y1

∫ y3

y1

3!e−y1e−y2e−y3 dy2dy3

= 6e−y1

∫ ∞
y1

e−y3
[
−e−y2

]y2=y3

y2=y1
dy3

= 6e−y1

∫ ∞
y1

e−y3
[
−e−y3 + e−y1

]
dy3

= 6e−y1

∫ ∞
y1

−e−2y3 + e−y1−y3 dy3

= 6e−y1

[
1
2
e−2y3 − e−y1−y3

]y3=∞

y3=y1

= 6e−y1

(
−1

2
e−2y1 + e−2y1

)
= 3e−3y1 , y1 > 0. �

For a given k ∈ {1, 2, . . . , n},

fYk(yk) =
∫ yk

−∞

∫ y3

y1

∫ y4

y2

· · ·
∫ yk

yk−2

∫ yk+2

yk

· · ·
∫ yn−1

yn−3

∫ yn

yn−2

∫ ∞
yn−1

n!
n∏
i=1

fX(yi) dyndyn−1 . . . dyk+1dyk−1 . . . dy1

=
n!

(k − 1)!(n− k)!
[FX(yk)]k−1fX(yk)[1− FX(yk)]n−k

=
(

n

k − 1, 1, n− k

)
[FX(yk)]k−1fX(yk)[1− FX(yk)]n−k

The limits on the integrals derive from the fact that −∞ < y1 < y2 < · · · < yk−1 < yk < yk+1 < · · · < yn <∞:

y
y1 y2 · · · yk−1 yk yk+1 · · · yn−1 yn

Let’s think about what this formula means:

fYk(yk)︸ ︷︷ ︸
≈ 1
εP(Yk≈εyk)

=
(

n

k − 1, 1, n− k

)
︸ ︷︷ ︸

choose

k − 1 values to be < yk,

1 value to be = yk,

n− k values to be > yk

· [FX(yk)]k−1︸ ︷︷ ︸
[P(X<yk)]k−1

· fX(yk)︸ ︷︷ ︸
≈ 1
εP(X≈εyk)

· [1− FX(yk)]n−k︸ ︷︷ ︸
[P(X>yk)]n−k

(7.4.1)

Above, the notation P(X ≈ε yk) means the probability that X is in an epsilon neighborhood of yk, which means
that

|X − yk| < ε ⇔ yk − ε < X < yk + ε for some small ε > 0.
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7 - Jointly Distributed Random Variables, Continued

This gets into an interpretation of fX(x) which might be new to you:

εfX(x) ≈ P(|X − yk| < ε) = P(yk − ε < X < yk + ε) for some small ε > 0.

Example 7.4.2. Suppose X1, . . . , X10
iid∼ Exp(1), so that fX(x) = e−x. Then for Y4 = X(4),

fY4(y4) =
10!
3!6!

(
1− e−y4

)3
e−y4

(
e−y4

)6 for y4 > 0,

since for X ∼ Exp(λ), FX(x) =
∫ x

0

λe−λt dt =
[
−e−λt

]x
0

= 1− e−λx. �

Note that if X1, . . . , Xn are joint discrete distributions, then there is a nonzero probability that Xi = Xj even
when i 6= j. However, that’s the only difference – everything else is the same. For the joint probability of all order
statistics, nothing changes. But now let’s look at one particular order statistic, X(k); 1 ≤ k ≤ n; k, n ∈ N. Then
fY (k)(yk) =

(
n

k−1,1,n−k
)
· ([FX(yk)] (k − 1)) · fX(yk) · ([1FX(yk) + fX(yk)] (n− k)). The only difference is in the last

term, where fX(yk) is added. This is because there is the possibility that some of the k + nth order statistics are
equal to the kth.

One last formula, that of joint ith and jth order statistic:

fYi,Yj (yi, yj)=
( n

i− 1, 1, j − i− 1, 1, n− j

)
· [FX(yi)]

i−1 · fX(yi) · [FX(yj)− FX(yi)]
j−i−1 · fX(yj) · [1− FX(yj)]

n−j

=
n!

(i− 1)!(j − i− 1)!(n− j)!
· [FX(yi)]

i−1 · [FX(yj)− FX(yi)]
j−i−1 · [1− FX(yj)]

n−j · fX(yi) · fX(yj)

for yi < yj .
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8 - Limiting Distributions

8 Limiting Distributions

8.1 Approximation of the Binomial Probability Law by the Normal and
Poisson

Theorem 8.1.1 (DeMoivre-LaPlace Theorem). The probability that a rv having a binomial distribution with
parameters n and p will have an observed values between a and b inclusive, for any two integers a and b, is
approximately given by

b∑
k=a

(
n

k

)
pkqn−k ≈ 1√

2π

b−np+1/2√
npq∫

a−np−1/2√
npq

e−y
2/2 dy = Φ

(
b− np+ 1/2
√
npq

)
− Φ

(
a− np− 1/2
√
npq

)

Proof: See an advanced probability text, such as Parzen (1960). �

8.1.1 Normal Approximation to the Binomial

Let X ∼ B(n, p) ⇒ E[X] = np, Var(X) = npq. Let Yn = X−np√
npq , and let Z = lim

n→∞
Yn. Then Z ∼ N(0, 1). In

practice, this means that for large n (n > 30 usually suffices), Yn is approximately N(0, 1).

Example 8.1.1. Let X ∼ B(10, 1
5 ). Then

E[X] = 10 · 1
5

= 2, Var(X) = 10 · 1
5
· 4

5
=

8
5
⇒ σX ≈ 1.26.

We want to find P(1 ≤ X ≤ 3). The actual probability yields

P(1 ≤ X ≤ 3) =
3∑

x=1

(
10
x

)(
1
5

)x(4
5

)5−x

≈ 0.2684 + 0.3020 + 0.2013 = 77.17%.

The approximation (which requires a continuity correction factor) yields

P
(

1− 1
2
≤ X ≤ 3 +

1
2

)
= P (0.5 ≤ X ≤ 3.5)

= P
(

0.5− 2
1.265

≤ X − 2
1.265

≤ 3.5− 2
1.265

)
= P(−1.186 ≤ Z ≤ 1.186)
= Φ(1.186)− Φ(−1.186)
= Φ(1.186)− [1− Φ(1.186)]
= 2Φ(1.186)− 1
≈ 2 · 0.8830− 1
= 76.60%. �
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In general, for a, b ∈ Z∗,

P(a ≤ X ≤ b) = P(a− 1
2 ≤ X ≤ b+ 1

2 ) = P
(
a− 1

2 − np√
npq ≤ X− 1

2 − np√
npq ≤ b+

1
2 − np√
npq

)
≈ P

(
a− 1

2 − np√
npq ≤ Z ≤ b+

1
2 − np√
npq

)
.

Example 8.1.2. Binomial with n = 100, p = 0.3:

# Successes Binomial Probability Normal Approximation % Error

9 ≤ X ≤ 11 0.000006 0.00003 +400%

12 ≤ X ≤ 14 0.00015 0.00033 +100%

15 ≤ X ≤ 17 0.00201 0.00283 +40%

18 ≤ X ≤ 20 0.1430 0.1599 +12%

21 ≤ X ≤ 23 0.05907 0.05895 0%

24 ≤ X ≤ 26 0.14887 0.14447 -3%

27 ≤ X ≤ 29 0.23794 0.23405 -2%

31 ≤ X ≤ 33 0.23013 0.23405 +2%

34 ≤ X ≤ 36 0.14086 0.14447 +3%

37 ≤ X ≤ 39 0.05889 0.05895 0%

40 ≤ X ≤ 42 0.01702 0.01599 -6%

43 ≤ X ≤ 45 0.00343 0.00283 -18%

46 ≤ X ≤ 48 0.00049 0.00033 -33%

49 ≤ X ≤ 51 0.00005 0.00003 -40%

�

Example 8.1.3. Toss a fair die n = 6000 times. The probability that a 3 will occur between 980 and 1030 times is

1030∑
k=980

(
6000
k

)(
1
6

)k (5
6

)6000−k

≈ Φ

1030− 1000 + 1
2√

6000 · 1
6 ·

5
6

− Φ

980− 1000− 1
2√

6000 · 1
6 ·

5
6


≈ Φ(1.06)− Φ(−0.71)
≈ 0.8554− 0.2389
≈ 0.62. �

Rule of Thumb: Use the normal approximation if np(1− p) ≥ 3.

The Poisson approximation to the binomial is used when the binomial pmf is far from being bell-shaped – usually
p ≤ 0.1 and n is large but np is not large: (

n

k

)
pkqn−k ≈ enp (np)k

k!

This was proven in a previous chapter.

Historically, the Poisson approximation to the binomial might have been used because the term
(
n
k

)
was difficult to

compute for large n. However, with modern computers this is no longer true, so the Poisson approximation is hardly
used. It is, however, useful to remember the role of the binomial (actually, Bernoulli) distribution in the derivation
of a Poisson process, as explained in section 4.1.5.
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8 - Limiting Distributions

When np becomes large, the Poisson is approximated by the normal (which will be proven by the Central Limit
Theorem in the next section). Let Y ∼ P(λ) with λ = np. Then

Y − λ√
λ

=
Y − np
√
np

is approximately N(0, 1) for large n.

Example 8.1.4. Comparison of the Poisson to the normal approximation: Values of

P(a ≤ X ≤ b) =
b∑

x=1

e−100 100x

x!

for λ = 100:

Quantity Actual Probability Normal Approximation % Error

85 ≤ X ≤ 90 0.11384 0.11049

90 ≤ X ≤ 95 0.18485 0.17950

95 ≤ X ≤ 105 0.41763 0.41768

90 ≤ X ≤ 110 0.70652 0.70628

110 ≤ X ≤ 115 0.10738 0.11049

115 ≤ X ≤ 120 0.05323 0.05335

�

Example 8.1.5. From Parzen (1960): Suppose you are designing the physical premises of a newly-organized research
lab. Since there will be a large number of private offices in the lab, there will also be a large number n of individual
telephones, each connecting to a central telephone switchboard. the question arises: How many outside lines will
the switchboard require to establish a fairly high probability – say, 95% – that any person who desires the use of
an outside telephone line (whether on the outside of the lab calling in or on the inside calling out) will find one
immediately available?

Regard the problem as one involving independent Bernoulli trials. We suppose that for each telephone in the lab, say
the jth phone, that there is a probability pj that an outside line will be required (either for an incoming or outgoing
call).

One could estimate pj by observing in the course of an hour how many minutes hj an outside line is engaged and
estimating pj as hj

60 . In order to have repeated Bernoulli trials, we assume that p1 = p2 = · · ·Ppn = p.

We next assume that the event that the jth phone requires an outside line is independent of the event that the kth

phone requires an outside line for j, k ∈ {1, 2, . . . , n}. The problem is that exactly k outside lines will be in demand
at a given moment is (

n

k

)
pkqn−k.

Let K denote the number of outside lines connected to the lab switchboard.

P(# lines in demand ≤ K) =
K∑
k=0

(
n

k

)
pkqn−k ≥ 0.95.

If 0.1 ≤ p ≤ 0.9 and n is large, then

K∑
k=0

(
n

k

)
pkqn−k ≈ Φ

(
K − np+ 1

2√
npq

)
− Φ

(
K − np+ 1

2√
npq

)
≥ 0.95
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8 - Limiting Distributions

If p ≤ 0.1 and n is large (but np is not “too large”), then

K∑
k=0

(
n

k

)
pkqn−k ≈

K∑
k=0

e−np(np)k

k!
≥ 0.95

In both of the above equations, we need to solve for K:

Value of K for those two equations

p 1
30

1
10

1
3

Approximation Poisson Normal Poisson Normal Poisson Normal

P = 0.95 n = 90 6 5.3 14 13.2 39 36.9

n = 900 39 38.4 106 104.3 – 322.8

P = 0.99 n = 90 8 6.5 17 15.1 43 39.9

n = 900 43 42 113 110.4 – 332.4

�

8.2 Central Limit Theorem

We already know that there is a 1-1 relationship between FX(·) and φX(·). We will now state a theorem that further
related distribution functions to characteristic functions.

Theorem 8.2.1 (Continuity Theorem). Let {Xn : n ∈ Z+} and X be rvs such that

lim
n→∞

φXn(t) = φX(t), −∞ < t <∞

Then

lim
n→∞

FXn(x) = FX(x)

at all points x where FX(·) is continuous.

Proof: Involved – see an advanced probability text. �

The continuity theorem states that convergence of characteristic functions implies convergence of the corresponding
distribution functions. In other words, distribution functions depend continuously on their characteristic functions.

For example, if lim
n→∞

φXn(t) = e−t
2/2, then lim

n→∞
FXn(x) = Φ(x) =

∫ x

−∞

1√
2π
e−y

2/2 dy.

Before we prove the Central Limit Theorem, we prove a needed lemma:
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Lemma 8.2.1. Let X be an rv having a characteristic function φX(t), a finite mean E[X] = µ, and a finite variance
σ2. Then

lim
t→0

lnφX(t)− iµt
t2

= −σ
2

2
.

Proof: φX(t) is continuous in t and φX(0) = 1. Thus, lnφX(t) is well defined for t near 0. Note that lnφX(0) = 0.

We know that φ′X(0) = iµ and that φ′′X(0) = i2E
[
X2
]

= −E
[
X2
]

= −(µ2 + σ2). Thus,

lim
t→0

lnφX(t)− iµt
t2

= lim
t→0

φ′X(t)/φX(t)− iµ
2t

L’Hôpital’s Rule

= lim
t→0

φ′X(t)− iµφX(t)
2tφX(t)

= lim
t→0

φ′′X(t)− iµφ′X(t)
2tφ′X(t) + 2φX(t)

L’Hôpital’s Rule (again)

=
−(µ2 + σ2)− iµ(iµ)

0 · iµ+ 2 · 1

=
−µ2 − σ2 + µ2

2

= −σ
2

2
.

�

Theorem 8.2.2 (Central Limit Theorem). Let X1, . . . , Xn be iid, each having a finite mean µ and a finite
variance σ2. Let Sn = X1 + · · ·+Xn. Then

lim
n→∞

P
(
Sn − nµ
σ
√
n
≤ x

)
= Φ(x), x ∈ R.

Proof: Let S∗n = Sn−nµ
σ
√
n

. Note that S∗n is the standardized rv corresponding to Sn. That is, E [S∗n] = 0 and
Var (S∗n) = 1.

φS∗n(t) = exp
(
−inµt
σ
√
n

)
· φSn

(
t

σ
√
n

)
= exp

(
−inµt
σ
√
n

)
· φX1

(
t

σ
√
n

)n
= exp

(
−inµt
σ
√
n

)
· exp

[
n lnφX1

(
t

σ
√
n

)]
= exp

[
n lnφX1

(
t

σ
√
n

)
− inµt

σ
√
n

]
.

We will show that

lim
n→∞

[
n lnφX1

(
t

σ
√
n

)
− inµt

σ
√
n

]
=
−t2

2
(8.2.1)

Note that (8.2.1) is true if t = 0. If t 6= 0, then the left side of (8.2.1) may be written as

t2

σ2
lim
n→∞

 lnφX1

(
t

σ
√
n

)
− iµ

(
t

σ
√
n

)
(

t
σ
√
n

)2

 (8.2.2)
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by multiplying (8.2.1) by t2/σ2

t2/σ2 . In (8.2.2), when n→∞, t
σ
√
n
→ 0. Thus, we can write (8.2.2) as

t2

σ2
lim
t

σ
√
n
→0

 lnφX1

(
t

σ
√
n

)
− iµ

(
t

σ
√
n

)
(

t
σ
√
n

)2

 =︸︷︷︸
Lemma 8.2.1

t2

σ2

(
−σ2

2

)
=
−t2

2
.

Therefore, we have proven (8.2.1), and it thus follows that

lim
n→∞

φS∗n(t) = lim
n→∞

exp
[
nφX1

(
t

σ
√
n

)
− inµt

σ
√
n

]
= exp

[
lim
n→∞

t

σ
√
n
− inµt

σ
√
n

]
= exp

(
−t2

2

)
.

But this is the characteristic function for a N(0, 1) rv. Therefore, by the continuity theorem,

lim
n→∞

P (S∗n ≤ x) = Φ(x).

�

By the CLT, we obtain that for large n and Sn = X1 + · · ·+Xn, where Xi are iid rvs,

P(Sn ≤ x) = P
(
Sn − nµ
σ
√
n
≤ x− nµ

σ
√
n

)
≈ Φ

(
x− nµ
σ
√
n

)
.

Example 8.2.1. Suppose that the life length of a certain kind of light bulb, after it is installed, is exponentially
distributed with mean life length of 10 days. As soon as one light burns out, a similar one is installed. Find the
probability that more than 50 bulbs will be required during a one-year period.

Let Xn denote the life length of the nth light bulb that is installed.

Assume that X1, . . . , Xn
iid∼ Exp(mean = 10 days) = Exp

(
λ = 1

10 days

)
. Sn denotes the time when the nth bulb

burns out. We want to find P(S50 < 365). Since

E [S50] =
50
λ

= 500, Var (S50) =
50
λ2

= 5000,

then the CLT tells us that

P (S50 < 365) ≈ Φ
(

365− 500√
5000

)
≈ Φ(−1.91) ≈ 0.028.

Thus, it is unlikely that more than 50 bulbs will be needed. �
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Example 8.2.2. Let X1, . . . , Xn
iid∼ Exp(1). It can be shown that Sn = X1 + · · · = Xn ∼ Gamma(n, λ). However,

for large values of n,

P(Sn ≤ x) = P
(
Sn − n√

n
≤ x− n√

n

)
≈ Φ

(
x− n√

n

)
.

In other words, the distribution of Sn is approximately N(n, σ2 = n). This can be shown graphically.

x

fX(x)

5 10 15 20

1√
2πn

Gamma(n, λ) Distribution

Normal Approximation

n = 2:

x

fX(x)

5 10 15 20

1√
2πn

n = 5:

x

fX(x)

5 10 15 20

1√
2πn

n = 15:

�

A more general form of the CLT can be proven. If X1, X2, . . . are independent rvs with finite means and finite
variances, and if ∀k, σk

σ[Sn] < ε ∀ε > 0, and if n is sufficiently large, then

Sn − E [Sn]
σ [Sn]

→ N(0, 1).
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Example 8.2.3. Candidates A and B are running for office and 45% of the electorate favor candidate A. What is
the probability that in a sample of size 100, at least 50% of those samples will favor candidate A?

Let

Xi =

{
1 if person i favors candidate A
0 otherwise

.

Then X1, . . . , X100 are independent Bernoulli rvs where p = P(Xi = 1) = 0.45. Then
100∑
i=1

Xi is the number of people

sampled who will favor A, and
100∑
i=1

Xi ∼ B(100, 0.45). We want to find P

(
100∑
i=1

Xi ≥ 50

)
.

We could do this via a computer or with the Binomial tables. However, it is easier to use the CLT, which tells us
that

n∑
i=1

Xi − np√
np(1− p)

·∼ N(0, 1) for large n.

Thus,

P

(
100∑
i=1

Xi ≥ 50

)
= P


100∑
i=1

Xi − 100(0.45)√
100(0.45)(0.55)

≥
50− 100(0.45) + 1

2√
100(0.45)(0.55)

 ≈ P (Z ≥ 1.11) = Φ(1.11) ≈ 13%. �

Example 8.2.4. If each strand in a rope has a breaking strength with mean 20 pounds and sd 2 pounds and
the breaking strength of a rope is the sum of the (independent) breaking strengths of all the strands, what is the
probability that a rope made up of 64 strands will support a weight of 1280 pounds or more?

Let the rv X denote the breaking strength of the ith strand. Given that E[Xi] = 120, σ[Xi] = 2 ∀i, and that
X1, . . . , X64 are all independent, we know by the CLT that

n∑
i=1

Xi − 1280

2
√

64
·∼ N(0, 1) for large n.

Thus,

P

(
64∑
i=1

Xi > 1280

)
= P


64∑
i=1

Xi − 64(20)

2
√

64
>

1280− 1280
2

√
64

 ≈ P (Z ≥ 0) = Φ(0) = 50%.

If we want to calculate the probability that the rope will support a weight of 1240 pounds, then

P

(
64∑
i=1

Xi > 1240

)
= P


64∑
i=1

Xi − 64(20)

2
√

64
>

1240− 1280
2

√
64

 ≈ P
(
Z ≥ −40

16

)
= Φ(−2.5) = 99%. �
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8.3 Chebyshev’s Inequality

Suppose that the mean and variance of an rv X are known. We would like to calculate P(µ − hσ ≤ X ≤ µ + hσ),
where µ = E[X], σ = σ[X], and h ≥ 0.

• If we know the functional form of the pmf or pdf, then it may be possible to relate the unknown parameters
to the mean, µ, and the variance σ2. As examples,

– If X ∼ N(µ, σ2), then

P (µ− hσ ≤ X ≤ µ+ hσ) = P
(
−h ≤ X−µ

σ ≤ h
)

= Φ(h)− Φ(−h) =
∫ h

−h

1√
2π
e−y

2/2 dy.

– If X ∼ Exp
(
µ = 1

λ

)
, then µ = 1

λ and σ2 = 1
λ2 , and

P (µ− hσ ≤ X ≤ µ+ hσ) = P
(

1−h
λ ≤ X ≤

1+h
λ

)

=



∫ 1+h
λ

1−h
λ

λe−λy dy =
[
−e−λy

] 1+h
λ

1−h
λ

= e−1+h − e−1−h h < 1

∫ 1+h
λ

0

λe−λy dy =
[
−e−λy

] 1+h
λ

0
= 1− e−1−h h ≥ 1

.

• If we don’t know the functional form of the pmf or pdf, then a crude estimate of P(µ− hσ ≤ X ≤ µ+ hσ) can
be obtained.

A Russian probabilist, Chebyshev, with the help of another Russian, Markov, found a lower bound for this probability
using only the information that the rv X has a finite mean µ and variance σ2.

Theorem 8.3.1 (Markov’s Inequality). Let the rv X have the property that P(X < 0) = 0 and E[X] = a <∞,
where a > 0. Then for any k ≥ 1,

P(X < ak) ≥ 1− 1
k
.

Proof: The proof will be for the continuous case – the discrete case is similar.

By hypothesis, ∫ 0

−∞
fX(x) dx = 0 ⇒

∫ 0

−∞
xfX(x) dx = 0.

Thus,

a = E[X] =
∫ ∞

0

xfX(x) dx ≥
∫ ∞
ak

xfX(x) dx ≥ ak
∫ ∞
ak

fX(x) dx = ak(1− P(X < ak).

Dividing both sides by ak > 0 gives

1
k
≥ 1− P(X < ak) ⇔ 1− 1

k
≤ P(X < ak).

�
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Example 8.3.1. Let X be a discrete rv s.t., P(X ≤ 0) = 0 and E[X] = 5. Then

if k = 2, then P(X < 10) = P(X < 5 · 2) ≥ 1− 1
2

=
1
2

if k = 7
5 , then P(X < 7) = P(X < 5 · 7

5 ) ≥ 1− 5
7

=
2
7
,

if k = 1, then P(X < 5) = P(X < 5 · 1) ≥ 1− 1
1

= 0.

Of course, that last equation is not very helpful – again, this is a very rough lower bound. However, note that this
lower bound is indeed attainable. If P(X = 5) = 1, then we still have E[X] = 5, and P(X < 5) = 0. �

Theorem 8.3.2 (Chebyshev’s Inequality). If the rv Y has nonzero finite variance σ2, then ∀h ≥ 0,

P (|Y − µ| < hσ) ≥ 1− 1
h2
,

where µ = E[Y ].

Proof: If h < 1, the inequality is true, since 1− 1
h2 < 0. Let h ≥ 1 be given. Let X = (Y −µ)2. Then P(X < 0) = 0

and E[X] = σ2 ∈ (0,∞) by hypothesis. From Markov’s Inequality with a = σ2 and k = h2, we have

P
(
|Y − µ| < hσ2

)
= P

(
(Y − µ)2 < h2σ2

)
= P(X < ka) ≥ 1− 1

k
= 1− 1

h2
.

�

Under the general assumptions of the theorem, only that Y has a finite and non-zero variance, the inequality cannot
be improved, as shown in Example 8.3.2.

Example 8.3.2. This is from Birnbaum (1962, pp. 87-88). Let x0 ∈ R, and let t, σ ∈ R be given s.t. t > 1, σ > 0.
Then let the rv X have possible values

x0 − tσ, x0, x0 + tσ

with probabilities

1
2t2

, 1− 1
t2
,

1
2t2

.

Then X has expectation x0 and variance σ2. Furthermore,

P (|X − x0| < tσ) = P(X − x0) = 1− 1
t2
,

which is the lower bound shown by Chebyshev’s Inequality. Here, Chebychev’s Inequality gives a lower bound for
the probability that X will fall into an interval of width 2tσ, with the midpoint x0. �

Chebyshev’s inequality states that with h = 4, the probability is at least 93.75% that an observed value of X will lie
within 4 standard deviations of the mean. That is, that

P(−4σ < y − µY < 4σ) ≥ 1− 1
16

= 93.75%.

We know that is X ∼ N(µ, σ), then

P(−2.58σ < X − µX < 2.58σ) ≈ 99%.

Chebyshev’s inequality may be restated in the form

P (|y − µY | ≥ hσ) <
1
h2
.
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8.4 Laws of Large Numbers

Theorem 8.4.1 (Weak Law of Large Numbers). Let X be an rv with finite variance σ2 and mean µ. Let
X1, . . . , Xn be a countable sequence of independent repetitions of X. then

P
(∣∣∣∣X1 + · · ·+Xn

n
− µ

∣∣∣∣ < ε

)
≥ 1− σ2

nε2
∀ε > 0. (8.4.3)

Proof: Let X̄n = X1+···+Xn
n . Then

E
[
X̄n

]
=

1
n

n∑
i=1

E [Xi] =
1
n
· nE[X] = µ.

σ2
X̄n

=
1
n2

n∑
i=1

Var(Xi) =
1
n2
· nσ2 =

σ2

n
.

Assume σ2 > 0. Then

P
(∣∣X̄n − µ

∣∣ < ε
)

= P
(∣∣X̄n − µ

∣∣ < σX̄n ·
ε

σX̄n

)
= P

(∣∣X̄n − µ
∣∣ < hσX̄n

)
where h = ε

σX̄n

≥ 1− 1
h2

from Chebychev’s inequality

= 1− 1
ε2/σ2

X̄n

= 1−
σ2
X̄n

ε2

= 1− σ2

nε2
.

Note that is σ2 = 0, then P(|X̄n − µ| < ε) = 1 ∀ε > 0. �

Example 8.4.1. Assume that Var(X) = 2.1 The mean and the functional form of the pdf/pmf is not known. How
large a sample should one take in order to have P

(∣∣X̄n − µ
∣∣ < 0.02

)
≥ 95%?

We want to find n in the WLLN. Assume that σ2 = 2, ε = 0.02. Then

P
(∣∣X̄n − µ

∣∣ < 0.02
)
≥ 1− σ2

nε2
≥ 0.95 ⇒ σ2

nε2
≤ 0.05

⇒ n ≥ σ2

0.05ε2
=

2
0.05 · 0.042

= 100, 000.

What approximation would you use if you knew µ and σ2? �

1Actually, we can assume that Var(X) ≤ 2 – this is just an upper bound for Var(X)
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Example 8.4.2. How many trials on an experiment with two outcomes (A and B) should be performed in order
that the probability will be 95% or greater that the observed relative frequency of A will differ from the probability
p of the occurrence of A by no more than 0.02?

We will use the law of large numbers. Let

X =

{
1 if A occurs
0 otherwise (if B occurs)

.

The observed relative frequency of A is X̄n = X1+···+Xn
n . P(A) = P(Xi = 1) = p and E [Xi] = E

[
X̄n

)
= p. We want

to find n � P
(∣∣X̄n − p

∣∣ < ε
)
≥ 0.95, where ε = 0.02, i.e., σ2

nε2 ≤ 0.05.

We know that σ2
X = p(1− p) ≤ 1

4 , which we can show by

p(1− p)− 1
4

= p− p2 − 1
4

= −
(
p2 − p+

1
4

)
= −

(
p− 1

2

)2

≤ 0

and adding 1
4 to both sides. Therefore,

σ2

nε2
≤ 1/4
nε2
≤ 0.05 ⇒ n ≥ 1

4 · 0.022 · 0.05
≈ 12, 500.

Note that if we knew p, we would use the fact that X̄n−p√
p(1−p)/n

·∼ N(0, 1). �

Corollary 8.4.1. If the hypothesis of the WLLN are satisfied, then

lim
n→∞

P
(∣∣X̄n − µ

∣∣ < ε
)

= 1 ∀ε > 0. (8.4.4)

Proof: This follows immediately from Equation (8.4.3). �

Note that one can prove (8.4.4) using only the assumption that E [Xi] = µ is finite. That is, one does not need to
assume a finite variance for Xi.
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9 Markov Chains

9.1 Mathematical Model

Consider a physical system such as emissions from a radioactive source. Assume that this system is observed
periodically and that the state of the system at each observation is noted. For emissions, the state of the system at
each time t is the total number of emissions that have occurred during the time interval from 0 to t.

Let the possible states of the system be denoted E0, E1, E2, . . .. We will use the variable Xi to represent the outcome
of the ith observation of the system. Thus, Xi can take as a value any one of the states E0, E1, E2, . . .. After
n observations of the system, we have a sample (X1, . . . , Xn). For radioactive emissions, the possible states are
{Ei = i emissions : i = 0, 1, . . . ,m}.

If the system is observed every 10 seconds and we start at time 10 seconds, then the ith observation is taken at time
10i seconds. On the ith observation, we observe one of the possible states.

A possible sample after eight observations is (X1, . . . , X8) = (E2, E4, E4, E5, E8, E9, E9, E10). Thus, on the 5th

observation (at time 50 seconds), state E8 (total of 8 emissions) was observed.

Since the sample is obtained sequentially, an important question that can be asked is:

Does our knowledge of past history of the system affect the probability of future events?

For example, does knowledge of the outcome on the first k− 1 observations affect our probability of some particular
state, say Ei, on the kth observation?

Obviously for radioactive emissions, knowledge of the particular state observed on the k+ 1st observation affects our
probability of observing Ei on the kth observation. E.g., knowing that state E10 (total of 10 emissions) was observed
on the 8th observation affects the probability of observing E2 (total of 2 emissions) on the next (9th) observation
(i.e., this has a probability of zero).

We can restate the general question again in the following form: What is the probability of observing state Ei on the
kth observation, knowing the particular states that were observed at each of the previous k − 1 observations? This
probability may be expressed as

P (Xk = Ei|X1 = Ej1, X2 = Ej2, . . . , Xk−1 = Ejk−1) ,

where Ejn for n = 1, . . . , k − 1 denotes the state that was observed on the nth observation.

Assume the outcomes of the observations in a system are independent of one another (in our example they are
dependent). It can be shown that

P (Xk = Ei|X1 = Ej1, X2 = Ej2, . . . , Xk−1 = Ejk−1) = P (Xk = Ei) .

Example 9.1.1. A simple example of this type of system, where the observations are independent of one another,
is that of tossing repeatedly a fair coin. The possible states are { heads, tails }. The probability of observing a head
on the 4th toss, given that the first 3 tossses were tails, is still the (unconditional) probability of observing a head
on the 4th toss – i.e., 1

2 . Using the notation defined above, where E1 = {head} and E2 = { tail },

P (X4 = E1|X1 = E2, X2 = E2, X3 = E2) = P(X4 = E1) = 1
2 . �

In general, however, many physical systems show dependence, and the state that occurs on the kth observation
is conditioned by the particular states through which the system has passed before reaching the kth state. For a
probabilistic system, this fact may be stated mathematically by saying that the probability of being in a particular
state on the kth observation does depend on some or all of the previous k − 1 states which were observed.
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Example 9.1.2. Suppose we draw without replacement 13 cards from an ordinary bridge deck. Then the probability
that the eighth draw produces an ace of spades depends on the outcome of the preceding 7 draws. For this system
there are 52 possible states. let Ek = { ace of spades }. Then

P (X8 = Ek|X1 = Ej1, . . . , X7 = Ej7) =

{
1
45 Xi 6= Ek ∀i = 1, 2, . . . , 7
0 otherwise

. �

Definition 9.1.1 (Markov Chain). A Markov Chain is a probabilistic model that applies to systems that exhibit
a special type of dependence, where the state of the system on the kth observation depends only on the state of the
system on the (k − 1)st observation. That is,

P (Xk = Ei|X1 = Ej1, . . . , Xk−1 = Ejk−1) = P (Xk = Ei|Xk−1 = Ejk−1) ∀k ∈ Z∗.

Once this type of system is in a given state, future changes in the system depend only on this state and not on the
manner in which the system arrived at this particular state.

Example 9.1.3. Consider two urns: One red and one black:

The red urn contains 10 red and 10 black balls,
The black urn contains 3 red and 9 black balls:

red urn

10 r
10 b

black urn

3 r
9 b

The system begins with the red urn where a ball is drawn, its color is noted, and it is then replaced. If the ball
drawn is red, the second draw is from the red urn; if the ball drawn is black, the second draw is from the black urn.
This process is repeated with the urn chosen for a draw determined by the color of the ball on the previous draw.
The two possible states in this example are E0 = { red ball } and E1 = { black ball }. Assume that when drawing
from an urn, each ball in that urn has the same probability of being drawn. The probability that on the 5th drawing
we obtain a red ball given the information that the outcomes of the previous drawings were (black, black, red, black)
= (E1, E1, E0, E1) is simply the probability of a red ball on the fifth draw, given that the fourth draw produced a
black ball. That is,

P(X5 = E0|X1 = E1, X2 = E1, X3 = E0, X4 = E1) = P(X5 = E0|X4 = E1) =
3
12

=
1
4
.

Note that the above result contrasts with

P(X5 = E0|X1 = E1, X2 = E1, X3 = E0, X4 = E0) = P(X5 = E0|X4 = E0) =
10
20

=
1
2
. �

9.2 Basic Concepts of Markov Chain Theory

Definition 9.2.1. The state space S of a Markov Chain is the set of all possible (and perhaps some impossible)
states of the system. I.e., it is the sample space.

For Example 9.1.3, the state space S = {{red ball}, {black ball} = {E1, E2}.

The states of a Markov chain are exclusive of one another – i.e., no two states can occur at the same time. markov
chains are applicable only to systems where the number of states is finite or countably infinite.
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Definition 9.2.2. A Markov chain is finite if the state space of the chain is finite.

When making observations of a system whose probabilistic model is a Markov chain, instead of saying that the ith

observation resulted in Ek, we usually say that at time i the system was in state Ek, or more simply in state k.
There are various conventions for starting time. Some writers start with time 1 so that a sample is denoted by
(X1, X2, . . . , Xn). Others starts with time 0 so that a sample is denoted (X0, X1, . . . , Xn). Here we shall start with
time 0.

Definition 9.2.3. The one-step transition probability function (homogeneous)1 for a Markov chain is a function that
gives the probability of going from state j to state k in one step (one time interval) for each j and k. The one-step
transition probability function in the homogeneous case is given by

pjk = P(Xn = Ek|Xn−1 = Ej) ∀j, k � Ej , Ek ∈ S, ∀n ≥ 2.

Many authors denote Ej and Ek by j and k, respectively:

pjk = P(Ek|Ej) = P(k|j).

The one-step transition probabilities can be arranged into a matrix form, called the transition probability matric
(tpm), as follows:

P =



↗ E0 E1 ··· Ej ···

E0 p00 p01 · · · p0j · · ·
E1 p10 p11 · · · p1j · · ·
...

...
...

...

Ei pi0 pi1 · · · pij · · ·
...

...
...

...


.

In the above notation, we label the states on the left and upper borders of the matrix, plus add “↗” to emphasize
that we are going from the left side to above.

Example 9.2.1. In Example 9.1.1,

p00 = P(E0|E0) = 1
2

p01 = P(E1|E0) = 1
2

p10 = P(E0|E1) = 1
4

p11 = P(E1|E1) = 3
4

⇒ P =

[↗ E0 E1

E0
1
2

1
2

E1
1
4

3
4

]
.

We see that the individual rows of P sum to 1. That is, 1
2 + 1

2 = 1 and 1
4 + 3

4 = 1. This is not a peculiarity of this
particular example, but is true of all one-step tpms P. �

Definition 9.2.4. A square matrix P is a stochastic matrix if for every row i,∑
all j

pij = 1.

All tpms are stochastic matrices.

1In general, the one-step transition probability function is given by pjk(n− 1, n) = P(Xn = Ek|Xn−1 = Ej).)
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Consider a particle that moves in a straight line in unit steps with the probability of a step to the right given by p
and a step to the left given by q = 1 − p. This type of system is called a random walk, and variations on it afford
some interesting examples of finite Markov chains. Let the number of possible states be 6. The state space for this
chain is illustrated below. the variations on the random walk model will be for the boundary (barrier) states, which
are states 0 and 5.

E0 E1 E2 E3 E4 E5

Example 9.2.2 (Random Walk with Reflecting Barriers). If the particle is in state 0, it moves to the right
with probability p and stays there with probability q. If the particle is in state 5, it moves to the left with probability
q and stays there with probability p. The tpm of this is

P =



↗ E0 E1 E2 E3 E4 E5

E0 q p 0 0 0 0

E1 q 0 p 0 0 0

E2 0 q 0 p 0 0

E3 0 0 q 0 p 0

E4 0 0 0 q 0 p

E5 0 0 0 0 q p


. �

Example 9.2.3 (Random Walk with Absorbing Barriers). If the particle is in state 0 or 5, it stays in that
state. Thus, we set p00 = p55 + 1:

P =



↗ E0 E1 E2 E3 E4 E5

E0 1 0 0 0 0 0

E1 q 0 p 0 0 0

E2 0 q 0 p 0 0

E3 0 0 q 0 p 0

E4 0 0 0 q 0 p

E5 0 0 0 0 0 1


. �
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Example 9.2.4. For a specific example of a random walk with absorbing barriers, consider the game of matching
pennies. Assume that two opponents, Nate and D.J., have five pennies between them. The coins are fair so that
the probabilities of a head or a tail are equal (i.e., equal to 1

2 ). Nate tosses a coin and records the outcome. Then
D.J. tosses a coin. If Nate’s and D.J.’s coins are the same (i.e., both heads or both tails), then Nate wins D.J.’s coin;
otherwise, D.J. wins it. Thus, on each toss, Nate wins with probability 1

2 . Let Ei = {i} represent the number of
pennies Nate has won. Thus, our states are {Ei : i = 0, 1, 2, 3, 4, 5}. The game ends with Nate has either all (5) or
none (0) of the pennies. This is a random walk with p = q = 1

2 . Given that Nate is in state k (he has k pennies), he
either goes to state k + 1 (wins) or k − 1 (loses), each with probability 1

2 . States 0 and 5 are absorbing states:

P =



↗ E0 E1 E2 E3 E4 E5

E0 1 0 0 0 0 0

E1
1
2 0 1

2 0 0 0

E2 0 1
2 0 1

2 0 0

E3 0 0 1
2 0 1

2 0

E4 0 0 0 1
2 0 1

2

E5 0 0 0 0 0 1


.

In the above matrix, p34 = 1
2 is the probability that Nate wins a fourth coin, given that he currently has 3 coins. �

Example 9.2.5 (Ehrenfest Diffusion Model). The Ehrenfest Diffusion Model is another example of a random
walk problem. Consider a physical system where k molecules are distributed between two containers A and B. These
containers are separated by a permeable membrane so that the molecules can move freely between them:

At each time point t, one of k molecules
is chosen at random and moved from
one container to the other.

A B

Mathematically, we set up the model by assuming that we have containers A and B, where movement is achieved
in the following manner: At each instant of time t, one of the k molecules is chosen at random and moved from one
container to the other. the state of the system is determined by the number of molecules in A and in B. Let the
state Ei = {i molecules are in A}. The possible states of the system are then E0, . . . , Ek. In the Ehrenfest model, if
A has j molecules, it can on the next trial go to states Ej+1 or Ej−1 with probabilities j

k and k−j
k , respectively:

P(Ej−1|Ej) = pj,j−1 = j
k , P(Ej+1|Ej) = pj,j+1 = k−j

k .

The tpm is thus given by

P =



↗ E0 E1 E2 E3 ··· Ek−1 Ek

E0 0 1 0 0 · · · 0 0

E1
1
k 0 k−1

k 0 · · · 0 0

E2 0 2
k 0 k−2

k · · · 0 0
...

...
...

...
...

...
...

Ek−1 0 0 0 0 · · · 0 1
k

Ek 0 0 0 0 · · · 1 0


.

These transition probabilities show a tendency to shift toward an equilibrium of 50% of the molecules in each
onctainer. �
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Definition 9.2.5. The initial probability function is a function that gives the probability that the system is initially
(at tome zero) in state i, ∀i. The initial probability function will be denoted by

p
(0)
i = P(X0 = Ei) ∀i.

The initial probability function is commonly arrayed in a vector form:

p(0) = (p(0)
0 , p

(0)
1 , . . .).

Example 9.2.6. In Example 9.1.3, the initial condition was that drawing was to begin in the red urn. Thus,

p
(0)
0 = P(X0 = E0) = 1

2 ,

p
(0)
1 = P(X0 = E1) = 1

2 .
⇒ p(0) =

(
1
2 ,

1
2

)
. �

9.3 Describing a System by a Markov Chain

A Markov chain is completely described when the state space S, initial probability function p(0), and one-step
transition probability function P are given. Therefore, to represent a physical system by a Markov chain, each one of
these must be calculated or estimated. Once this is done, there are four principal questions that we can investigate
using this Markov chain:

1. What is the probability of going from state j to state k in n steps?

2. What is the unconditional probability that at time n (i.e., n steps after the last observation), the system is in
state j?

3. If a Markov chain terminates when it reaches a state k (which by definition is an absorbing state), then what
is the expected (mean) time to reach k (and thus terminate the chain), given that the chain started in state j?

4. Is there a steady” state behavior for a Markov chain? That is, for each state j, does there exist a probability
function πj = lim

n→∞
P(Xn = Ej)

Each of these four questions can be answered using the information contained in S, p(0) and P.

9.3.1 n-step Transition Probability Matrix

We want to derive an n-step transition probability function

p
(n)
jk = P(Xt+n = Ek|Xt = Ej).

In n steps, a system may go from Ej to Ek by a number of different paths. For example, if the system has r possible
states, then in two steps it may go from Ej to Ek by

Ej → E0 → Ek,

Ej → E1 → Ek,
...

Ej → Er−1 → Ek.

(9.3.1)

In order to compute the probability of the event Ej → Ei → Ek, we need independence. As mentioned in chapter
XX, two events A and B are independent if P(AB) = P(A)P(B).
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Example 9.3.1. Toss a coin twice. For H = head and T = tail, suppose P(H) = P(T ) = 1
2 . Let Xi denote the

outcome of the ith toss. We know by assumption that X1 and X2 are independent. Therefore,

P(X1 = H,X2 = H) = P(X1 = H)P(X2 = H) =
1
2
· 1

2
=

1
4
. �

For Markov chains, the event of going from Ej to Ei in one step, Ej → Ei, is independent of the event Ei → Ek.
This follows from the definition of a Markov chain. Thus,

P([Ej → Ei] ∩ [Ei → Ek]) = P(Ej → Ei)P(Ei → Ek) = pjipik.

Since P(Ej → Ei → Ek) = P([Ej → Ei] ∩ [Ei → Ek]), we now have expressions for computing the probabilities of
the r paths listed in (9.3.1). Since these r paths are mutually exclusive (i.e., no pair of them happen simultaneously),
p

(2)
ji is equal to the sum of the probabilities over these r different paths:

p
(2)
jk =

∑
i∈S

pjipik.

By the same logic, the probability p(3)
jk of going from j to k in three steps is

p
(3)
jk =

∑
i∈S

pjip
(2)
ik .

By induction on n, it follows that

p
(n)
jk =

∑
i∈S

pjip
(n−1)
ik . (9.3.2)

We now have an answer to question 1 of this section: What is the probability of going from state j to state k in n
steps?

Using the same reasoning as above, we can express p(n)
jk in a slightly different form:

p
(n)
jk =

∑
i∈S

p
(n−1)
ji pik. (9.3.3)

More generally, using induction we can show that

p
(m+n)
jk =

∑
i∈S

p
(m)
ji p

(n)
ik . (9.3.4)

This is a special case of the Chapman-Kolmogorov equation. We can expressed these n-step transition probabilities
in a matrix form:

P(n) =



↗ E0 E1 ··· Ej ···

E0 p
(n)
00 p

(n)
01 · · · p

(n)
0j · · ·

E1 p
(n)
10 p

(n)
11 · · · p

(n)
1j · · ·

...
...

...
...

Ei p
(n)
i0 p

(n)
i1 · · · p

(n)
ij · · ·

...
...

...
...


.
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Algebraically, we can show (not here) that P(n) = Pn, where Pn is the one-step tpm multiplied by itself n times. In
matrix form, we can write (9.3.2) as

Pn = PPn−1,

(9.3.3) as

Pn = Pn−1P,

and (9.3.4) as

Pm+n = PmPn−1.

Example 9.3.2. From Example 9.2.1, we have

P =

[↗ E0 E1

E0
1
2

1
2

E1
1
4

3
4

]
.

Therefore,

P2 = P ·P =

[
1
2

1
2

1
4

3
4

][
1
2

1
2

1
4

3
4

]
=

[
1
4 + 1

8
1
4 + 3

8
1
8 + 3

16
1
8 + 9

16

]
=

[
3
8

5
8

5
16

11
16

]
.

and

P3 = P ·P2 =

[
1
2

1
2

1
4

3
4

][
3
8

5
8

5
16

11
16

]
=

[
3
16 + 5

32
5
16 + 11

32
3
32 + 15

64
5
32 + 33

64

]
=

[
11
32

21
32

21
64

43
64

]
. �

9.3.2 Unconditional Probability Functions

To get the unconditional probability function p(n)
k = P(Xn = Ek) of being in state k in n steps, we can use a slightly

different form of (9.3.4):2

p
(n)
k =

∑
i∈S

p
(0)
i p

(n)
ik . (9.3.5)

These unconditional probabilities p(n)
k can be written in vector form as

p(n) = (p(n)
0 , p

(n)
1 , . . .).

Therefore, we can write (9.3.5) in matrix-vector form as

p(n) = p(0)Pn.

Recall that P, P(n) and Pn refer to (conditional) transition probability matrices, while p and p(n) refers to an
unconditional probability vectors. There also should be no confusion between the conditional probability p

(n)
jk of

going from states j to k in n steps, and the unconditional probability p(n)
k of being at state k in n steps.

2which we can derive using the same logic as for (9.3.4).
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Example 9.3.3. As a continuation of Example 9.3.2, now assume that in addition to P, we also have an initial
probability function p(0):

P =

[↗ E0 E1

E0
1
2

1
2

E1
1
4

3
4

]
, p(0) =

[
3
4

1
4

]
.

Therefore,

p(1) = p(0)P =
[

3
4

1
4

] [ 1
2

1
2

1
4

3
4

]
=
[(

3
4 ·

1
2 + 1

4 ·
1
4

) (
3
4 ·

1
2 + 1

4 ·
3
4

)]
=
[

7
16

9
16

]
.

and

p(2) = p(0)P2 =
[

3
4

1
4

] [ 3
8

5
8

5
16

11
16

]
=
[(

3
4 ·

3
8 + 1

4 ·
5
16

) (
3
4 ·

5
8 + 1

4 ·
11
16

)]
=
[

23
64

41
64

]
. �

We now have the answer to question 2 of this section: What is the unconditional probability that at time n (i.e., n
steps after the last observation), the system is in state j?

9.3.3 Classification of States

Definition 9.3.1. A state k is accessible from a state i if ∃ a positive integer n � p
(n)
jk > 0. In other words, it is

possible to go from state i to state j in some (finite) number of steps.

Example 9.3.4. Suppose we have the following tpm:

P =



↗ 0 1 2 3

0 q p 0 0

1 q 0 p 0

2 0 q 0 p

3 0 0 q p

.

State 3 is accessible from state 2, since p(1)
23 = p23 > 0. In fact, every state is accessible from every state (including

itself). �

Definition 9.3.2. Two states j and k communicate if j is accessible from k and k is accessible from j.

Example 9.3.5. In Example 9.3.4, states 2 and 3 communicate, since p23 > 0 and p32 > 0. In fact, every state
communicates with every state. �

Definition 9.3.3. A nonempty set C of states is closed if no state outside the set is accessible from any state inside
the set. A single state k forming a closed set is an absorbing state. A Markov chain that has one or more absorbing
states is said to be an absorbing Markov chain.

Once a Markov chain enters a closed set, it remains within that set.

Definition 9.3.4. A Markov chain is irreducible if all pairs of states communicate.
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If a Markov chain has a closed set C, then for any state j ∈ C and k 6∈ C, p(n)
jk = 0 ∀n.

Example 9.3.6. Suppose we have the tpm

P =



↗ 0 1 2 3 4 5 6 7 8 9

0 1 0 0 0 0 0 0 0 0 0

1 0 0 1 0 0 0 0 0 0 0

2 0 1 0 0 0 0 0 0 0 0

3 0 0 0 1
3

1
3

1
3 0 0 0 0

4 0 0 0 1 0 0 0 0 0 0

5 0 0 0 1
4

1
2

1
8

1
8 0 0 0

6 0 0 0 0 1
2

1
2 0 0 0 0

7 0 0 0 1
4

1
4

1
4 0 1

4 0 0

8
1
6 0 0 0 0 2

3 0 0 1
6 0

9
2
3

1
6 0 0 0 0 0 0 0 1

6



.

Closed sets are C1 = {0}, C2 = {1, 2}, and C3 = {3, 4, 5, 6}. In fact, the three submatrices whose states form closed
sets may be studied separately:

[↗ 0

0 1
]
,

[↗ 1 2

1 0 1

2 1 0

]
,



↗ 3 4 5 6

3
1
3

1
3

1
3 0

4 1 0 0 0

5
1
4

1
2

1
8

1
8

6 0 1
2

1
2 0

.
In particular,

Pn =



1 0 0 0 0 0 0 0 0 0

0

0

[
0 1

1 0

]n
0 0 0 0

0 0 0 0

0 0 0

0 0 0

0

0

0

0

0 0

0 0

0 0

0 0


1
3

1
3

1
3 0

1 0 0 0
1
4

1
2

1
8

1
8

0 1
2

1
2 0


n
0 0 0

0 0 0

0 0 0

0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗


This Markov chain is not irreducible. �

Definition 9.3.5. A state j is transient, or nonrecurrent if the conditional probability of returning to j given that
the system starts at j is less than one.

It can be shown (not here) that a state j being transient is equivalent to

∞∑
n=1

p
(n)
jj <∞ or

∞∑
n=1

p
(n)
kj <∞ ∀k ∈ S.

139



9 - Markov Chains

It can be shown that if an irreducible Markov chain has a transient state, it must possess infinitely many states; i.e.,
if a chain has a transient state, it is not irreducible.

Definition 9.3.6. The period of a state k in a finite Markov chain is the greatest common divisor of the set of
positive integers n for which p

(n)
kk > 0. A state k is called aperiodic if it has period 1.

Example 9.3.7. Let

P =

[↗ 0 1

0 0 1

1 1 0

]

represent the tpm of a two-state Markov chain. Then

P2 =

[
0 1

1 0

][
0 1

1 0

]
=

[
1 0

0 1

]
= P4 = P2m ∀m ∈ Z+.

Thus, p(n)
11 > 0 ∀n = 2k, k ∈ Z+. The greatest common divisor of this set is 2. Hence state 0 has period 2, as does

state 1. This is an irreducible periodic Markov chain. �

Definition 9.3.7. A finite Markov chain is called aperiodic if there exists a state k with period 1.

We can show that a Markov chain is aperiodic by exhibiting a state k for which pkk = p
(1)
kk > 0. Thus if any of

the diagonal elements in P are non-zero, the chain is aperiodic. The converse is not true, however, as a chain may
be aperiodic even if all the diagonal elements of P are zero. We can also show (not here) that a Markov chain is
aperiodic by showing that there exists an integer n such that p(n)

jk > 0 ∀j, k.

Example 9.3.8. If

P =


↗ 0 1 2

0 0 1 0

1 0 1
2

1
2

2 1 0 0

,
then the chain is aperiodic, since p11 = 1

2 > 0. If

P =


↗ 0 1 2

0 0 1
2

1
2

1
1
2 0 1

2

2
1
2

1
2 0

,
the chain is still aperiodic, since

P2 =


↗ 0 1 2

0
1
2

1
4

1
4

1
1
4

1
2

1
4

2
1
4

1
4

1
2

.
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and thus p(2)
jk > 0 ∀j, k ∈ S.

Intuitively, we can perhaps understand why this second tpm P is aperiodic: Pick any state – say, 2. Since p(2)
22 > 0,

we know we can go from state 2 to state 2 in n = 2 steps. However, since p(2)
21 > 0 and p

(1)
12 > 0, we know that we

can go from state 2 to state 1 in two steps, and then to state 2 in one step – thus going from state 2 to state 2 in
n = 3 steps. Altogether, we can go from 2 to 2 in n = 2 or n = 3 steps. The gcd of {2, 3} is 1.

Indeed, this logic can be used for any state in S = {0, 1, 2}. �

9.3.4 Absorption Times for Finite Markov Chains

Let P denote the tpm for a finite absorbing Markov chain consisting of a set of transient states T and the set of
absorbing states. P may be written as

P =

[
I 0

R Q

]
,

where I is the identity transition matrix representing the absorbing states, Q = {pjk} is a square matrix where j and
k are members of the transient set T , and R is a rectangular matrix of transition probabilities from the transient
states to the absorbing states. Since the Markov chain is finite, T is not a closed communicating set (irreducible)
and hence does not determine a sub-Markov chain. Thus, Q is not a stochastic sub-matrix.

Example 9.3.9. Let

P =



↗ 0 1 2 3 4

0 1 0 0 0 0

1 q 0 p 0 0

2 0 q 0 p 0

3 0 0 q 0 p

4 0 0 0 0 1


p= 1

4====⇒ P =



↗ 0 1 2 3 4

0 1 0 0 0 0

1
3
4 0 1

4 0 0

2 0 3
4 0 1

4 0

3 0 0 3
4 0 1

4

4 0 0 0 0 1


.

Using the state transformation 0→ 0′, 4→ 1′, 1→ 2′, 2→ 3′ and 3→ 4′, we rewrite P as

P =



↗ 0′ 1′ 2′ 3′ 4′

0′ 1 0 0 0 0

1′ 0 1 0 0 0

2′
3
4 0 0 1

4 0

3′ 0 0 3
4 0 1

4

4′ 0 1
4 0 3

4 0


=

[
I 0

R Q

]

with

I =

[
1 0

0 1

]
, 0 =

[
0 0 0

0 0 0

]
, R =


3
4 0

0 0

0 1
4

 , Q =


0 1

4 0
3
4 0 1

4

0 3
4 0

 . �
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Let p(0) be the vector of initial probabilities. This vector can be partitioned as

p(0) =
[
p(0)
A p(0)

t

]
,

where p(0)
A and p(0)

T are the vectors that give the probabilities of being initially in each of the absorbing or transient
states, respectively. For most physical systems studied, p(0)

A = 0, the zero vector. That is, the probabilitiy of initially
being in an absorbing state is zero.

Recall that the physical system represented by a Markov chain is observed periodically at times 0, 1, 2, 3 . . .. Let the
variable W represent the time to absorption (that is, the number of steps to absorption) from the set of transient
states to the set of absorbing states. This variable can take values 1, 2, 3, 4, . . ..

The probability of going from the set of transient states to an absorbing state in n steps can be shown (not here) to
be

P(W = n) = p(0)
T Qn−1R1, n ∈ Z+, (9.3.6)

where 1 is a column vector whose components are all equal to 1. Let r and s denote the number of total and transient
states, respectively. Then p(0)

T is a 1 × s matrix and Qn−1 is an s × s matrix that gives the probability of staying
in the transient states for n − 1 time intervals. R is an s × (r − s) matrix giving the probability of going from a
transient state to an absorbing state. Multiplying R by the column vector 1 simply sums each row of R so that R1
is an s× 1 column vector that gives for each transient state j the probability of going from j to the set of aobsorbing
states. The matrix multiplication p(0)

T Qn−1R1 simply sums up, for each transient state j ∈ T , the probability of
starting in j, staying in the set of transient states for n− 1 steps, and then going into the set of absorbing states.

Example 9.3.10. Using the transformed transition matrix P of Example 9.3.9, R and Q are given as

R =


3
4 0

0 0

0 1
4

 , Q =


0 1

4 0
3
4 0 1

4

0 3
4 0

 .
Let p(0) =

[
0 0 1

4
1
2

1
4

]
, Then p(0)

T =
[

1
4

1
2

1
4

]
. By equation (9.3.6), the probability of going from the set of

transient states to an absorbing state in exactly one step is

P(W = 1) = p(0)
T Q0R1 = p(0)

T R1 =
[

1
4

1
2

1
4

]
3
4 0

0 0

0 1
4


[

1

1

]
=
[

1
4

1
2

1
4

]
3
4

0
1
4

 =
3
16

+
1
16

=
1
4
.

The probability of going from the set of transient states to an absorbing state in exactly two steps is

P(W = 2) = p(0)
T Q1R1 =

[
1
4

1
2

1
4

]
0 1

4 0
3
4 0 1

4

0 3
4 0




3
4

0
1
4

 =
5
16

;

The probability of going from the set of transient states to an absorbing state in exactly three steps is

P(W = 3) = p(0)
T Q2R1 =

[
1
4

1
2

1
4

]
0 1

4 0
3
4 0 1

4

0 3
4 0


2 

3
4

0
1
4

 =
5
32

;
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The probability of going from the set of transient states to an absorbing state in exactly four steps is

P(W = 4) = p(0)
T Q3R1 =

[
1
4

1
2

1
4

]
0 1

4 0
3
4 0 1

4

0 3
4 0


3 

3
4

0
1
4

 =
15
128

.

Continuing this process, we can graph the values of pW (n) = P(W = n), n ∈ Z+, which is a pmf:

n

pW (n)

Step n

P
ro

ba
bi

lit
y

of
ab

so
rp

ti
on

at
st

ep
n

0.1

0.2

0.3

1 2 3 4 5 6 7 8 9 10

�

In Example 9.3.10, we asserted without proof that pW (n) = P(W = n) is indeed a pmf. This is proven easily enough
– since all entries of the component matrices are nonnegative, we know that P(W = n) ≥ 0 ∀n. Furthermore, since
the events {W = i} and {W = j} for i 6= j cannot occur simultaneously, and there must be a transition from the
transient states to the absorbing states in some number n of steps, it follows that

∞∑
n=0

pW (n) =
∞∑
n=0

P(W = n) = 1.

In the graph above, we can see that lim
n→∞

P(W = n) = 0, which is true of any pmf.

Geometrically, this means that if the line segments connecting the points (n, 0) and (n,P(W = n)) are summed up
∀n ∈ Z+, the sum would have unit length.

The mean time (expected time) of absorption from the set of transient states is defined mathematically as

µW = E[W ] =
∞∑
n=1

nP(W = n).

It can be shown (not here) that the mean time of absorption from the set of transient states is given by

µW = E[W ] = p(0)
T (I−Q)−11. (9.3.7)

It is common to let

N = (I−Q)−1. (9.3.8)

This matrix is called the fundamental matrix of an absorbing Markov chain. It can be verified that I −Q has an
inverse by showing that

(I−Q)−1 =
∞∑
k=0

Qk
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and that this infinite series converges.

The second moment of absorption time is defined to be
∑∞
n=1 n

2P(W = n) and can be shown (not here) to be given
by

E
[
W 2
]

= p(0)
T (2N− I)N1. (9.3.9)

Mathematically, the variance for a pdf of absorption time is given by

Var(W ) =
∞∑
n=1

(n− µW )2P(W = n) = E
[
W 2
]
− (E[W ])2 = p(0)

T (2N− I)N1−
(
p(0)
T N1

)2

. (9.3.10)

Example 9.3.11. As a continuation of Example 9.3.10, we will compute the mean and variance of the absorption
time, using (9.3.7) and (9.3.10). First we compute

I−Q =


1 0 0

0 1 9

0 0 1

−


0 1
4 0

3
4 0 1

4

0 3
4 0

 =


1 − 1

4 0

− 3
4 1 − 1

4

0 − 3
4 1


so that

N = (I−Q)−1 =


13
10

2
5

1
10

6
5

8
5

2
5

9
10

6
5

13
10

 .
Therefore, the mean absorption time is

E[W ] = p(0)
T N1 =

[
1
4

1
2

1
4

]
13
10

2
5

1
10

6
5

8
5

2
5

9
10

6
5

13
10




1

1

1

 =
[

1
4

1
2

1
4

]
9
5
16
5
17
5

 =
29
10

= 2.9.

That is, the mean number of steps to absorption is 2.9. The second moment of the absorption time is

E
[
W 2
]

= p(0)
T (2N− I)N1 =

[
1
4

1
2

1
4

]
8
5

4
5

1
5

12
5

11
5

4
5

9
5

12
5

8
5




9
5
16
5
17
5

 =
1266
100

.

Therefore, the variance is

Var(W ) = E
[
W 2
]
− (E[W ])2 =

1266
100

− 841
100

=
425
100

=
17
4
. �

Note that the mean and variance of the time to absorption is influenced by the initial transition state vector.
Intuitively, this should make sense – if the initial state distribution makes it more likely to start out in a state which
is more likely to lead to an absorbing state, we should expect our expected time to absorption to decrease. Table
9.3.4 uses Equations (9.3.7), (9.3.9) and (9.3.10)

Let mj be the expected (mean) absorption time (number of steps) from a transient state j to one of the absorbing
states. Let M be a column vector whose components are mj . From Equations (9.3.7) and (9.3.8), it follows that

M = N1. (9.3.11)

Let the second moment of the absorption time from the transient state j to the set of absorbing states be denoted
by m(2)

j . From equations (9.3.9) and (9.3.11), it follows that

M(2) = {m(2)
j } = (2N− I)M.
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Initial transition state vector Mean absorption time Variance of absorption time

p(0)
T E[W ] Var(W )

[
1 0 0

]
1.80 2.8800[

0 1 0
]

3.20 3.8400[
0 0 1

]
3.40 4.8000[

1
2

1
4

1
4

]
2.55 4.1675[

1
4

1
4

1
2

]
2.95 4.5275[

1
4

1
2

1
4

]
2.90 4.2500

Table 9.1: Properties of the distribution of absorption times for the random walk of Example 9.3.9 using various
initial probability vectors p(0)

T .

Let the variance of the absorption time for a transient state j be denoted by vj . Since the variance equals the second
moment minus the square of the mean,

V = {vj} = M(2) −Msq = (2N− I)M−Msq

where Msq ≡ {m2
j}. That is, each element of the column matrix M is squared.

Example 9.3.12. As a continuation of Example 9.3.11, recall that

N =


13
10

2
5

1
10

6
5

8
5

2
5

9
10

6
5

13
10

 .
Therefore, the column of expected number of steps to absorption is

M = N1 =


13
10

2
5

1
10

6
5

8
5

2
5

9
10

6
5

13
10




1

1

1

 =


9
5
16
5
17
5

 =


1.8

3.2

3.4

 .
For instance, the expected number of steps from state 3 to absorption is 3.4. To find the second moments,

M(2) = (2N− I)M =


8
5

4
5

1
5

12
5

11
5

4
5

9
5

12
5

8
5




9
5
16
5
17
5

 =


153
25
352
25
409
25

 .
Therefore, the column of variances of expected steps to absorption is

V = M(2) −Msq =


153
25
352
25
409
25

−


81
25
256
25
289
25

 =


72
25
96
25
120
25

 .
From this vector, we see that the variance in absorption time is the greatest for state 4 and the least for state 2. �
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9.3.5 Limiting Distributions for Finite Markov Chains

the finite markov chains discussed in this section will have r states. If k is a transient state, then for any state j,
lim
n→∞

p
(n)
jk = 0. This follows from the fact that for a transient state k,

∞∑
n=1

p
(n)
jk <∞ ∀j ∈ S.

If k is not a transient state, then the problem of finding lim
n→∞

p
(n)
jk , if it exists, is in general more difficult.

Definition 9.3.8. A finite Markov chain is ergodic if there exists probabilities πj such that

lim
n→∞

p
(n)
ij = πk ∀i, j ∈ S. (9.3.12)

These limiting probabilities {πj} are the probabilities of being in a state after equilibrium has been achieved.

As can be seen from (9.3.12), the values {πj} are independent of the initial state i. in fact, we have the following
theorem about these unconditional probabilities:

Theorem 9.3.1. If lim
n→∞

p
(n)
ij = πj , then lim

n→∞
p

(n)
j = πj .

Proof: By definition (or the Chapman-Kolmogorov equations),

p
(n)
j =

r∑
k=1

p
(0)
k p

(n)
kj .

Therefore,

lim
n→∞

p
(n)
j = lim

n→∞

r∑
k=1

p
(0)
k p

(n)
kj =

r∑
k=1

p
(0)
k lim

n→∞
p

(n)
kj =

r∑
k=1

p
(0)
k πj = πj

r∑
k=1

p
(0)
k = πj · 1 = πj .

�

The limiting probabilities {πj}may be found by solving the following system of equations, derived from the Chapman-
Kolmogorov equations:

πj =
r∑

k=1

πkpkj , j ∈ {1, . . . , r} (9.3.13)

subject to the conditions

πj ≥ 0 ∀j;
r∑
j=1

πj = 1. (9.3.14)

The probability distribution {πj} defined by (9.3.13) and (9.3.14) is called a stationary distribution.

If a Markov chain is ergodic, then it can be shown (not here) that it possesses a unique stationary distribution. That
is, there exists one and only one set of numbers {πj} that satisfy Equations (9.3.12), (9.3.13) and (9.3.14). However,
there are Markov chains that have stationary distributions (which satisfy equations (9.3.12), (9.3.13) and (9.3.14))
which are not ergodic. For example, consider the tpm

P =

[
0 1

1 0

]
.
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Then

p
(n)
11 =

{
1 if n is even
0 if n is odd

,

so (9.3.12) is not satisfied, and so the chain is not ergodic. However, we can solve (9.3.13) and (9.3.14) to get
stationary probabilities π1 = π2 = 1

2 . recall that this P is the transition matrix for an irreducible periodic Markov
chain.

the following theorems will be stated without proof. They give some sufficient conditions for a finite Markov chain
to be ergodic.

Theorem 9.3.2. A finite irreducible aperiodic Markov chain is ergodic.

Example 9.3.13. Let

P =


1
4

1
4

1
2

0 2
3

1
3

3
4

1
4 0

 .
This chain is irreducible (all pairs communicate), since it can be shown that p(2)

ij > 0 ∀i, j ∈ S. It is aperiodic, since
p11 = 1

4 > 0. Hence by theorem 9.3.2, this chain is ergodic. To find the limiting distributions, solve (9.3.13) to obtain

π1 =
1
4
· π1 +

2
3
· π3

π2 =
1
4
· π1 +

2
3
· π2 +

1
4
· π3 ⇒ π =

[
2
7

3
7

2
7

]
.

π3 =
1
2
· π1 +

1
3
· π2

Therefore, the asymptotic probability of being in state 0 is 2
7 , in state 1 is 3

7 , and in state 2 is 2
7 . �

Example 9.3.14. For the Ehrenfest diffusion model in Example 9.2.5, it can be shown that if the number of
molecules k distributed between the two containers A and B is large, then the stationary probability πk/2 for state
Ek/2 is approximately one. The value of the stationary probability πk/2 depends on k, and it can be shown (e.g.,
Feller (1968, p. 397)) that lim

k→∞
πk/2 = 1. For example, if k = 1,000,000, then the probability of finding more than

505,000 molecules in A is about 10−23. �

Definition 9.3.9. A tpm is doubly stochastic if each column sums to 1. That is, if

r∑
i=1

pij = 1 ∀j ∈ S.

Recall that a tpm must by definition have each row sum to 1.

Theorem 9.3.3. If the tpm P for a finite irreducible aperiodic Markov chain with r states is doubly stochastic,
then the stationary probabilities are given by

πk =
1
r
∀k ∈ {0, . . . , r − 1}.
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Example 9.3.15. The tpm

P =


1
8

1
4

1
8

1
2

1
2

1
4

1
8

1
8

3
8

1
4

1
4

1
8

0 1
4

1
2

1
4


is irreducible, aperiodic and doubly stochastic. Therefore

πk =
1
4
∀k ∈ {0, 1, 2, 3}. �

9.3.6 Summary

A Markov chain is a probabilistic model for a physical system from which we have a sample (X0, X1, . . . , Xn). It is
characterized by the equation

P(Xk|X1, . . . , Xk−1) = P(Xk|Xk−1) ∀k ∈ Z+.

That is, the state of the system at any give time depends only on the previous state.

A Markov chain is completely described when the state space S, the initial probability vector p(0), and the one-step
transition probabiliy matrix P are given. Using the information contained in S, p(0) and P, it is possible to compute
the following:

1. The probability of going from state j to state k in n steps (time intervals). That is,

p
(n)
jk =

∑
i∈S

pjip
(n−1)
ik ∀j, k ∈ S.

This function may be written in matrix form as

P(n) = Pn = PPn−1,

where P(n) is called the n-step transition probability matrix.

2. The unconditional probability of being in state j at time n (n steps after the first observation). that is,

p
(n)
j =

∑
i∈S

p
(0)
i p

(n)
ij ∀j ∈ S.

This function may be written in matrix form as

p(n) = p(0)Pn.

3. The probability that the time W to absorption in a finite absorbing Markov chain. That is,

P(W = n) = p(0)
T Qn−1R1.

The mean (expected) time to absorption, the second moment, and the variance may also be computed.

4. For irreducible aperiodic finite markov chains, the limiting probability of being in a state j. That is,

lim
n→∞

P(Xn = Ej) = lim
n→∞

p
(n)
j = πj .
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10 Supplementary Problems

10.1 Algebra of Sets

1. To join a certain club, a person must be a lawyer, a liar, or both. There are 25 members in this club, of which
19 are lawyers and 16 are liars. How many club members are both lawyers and liars?

10.2 Fundamental Definitions and Axioms

1. Engine blocks coming off an assembly line are numbered serially. During one particular work shift, the six
blocks produced are numbered 17850 through 17855. An inspector selects two of the blocks at random to test
for stress damage. Write out the sample space of all possible pairs of blocks that might be inspected.

2. An urn contains six chips numbered 1 through 6. Three are drawn out without replacement. What outcomes
are in the event “second smallest chip is a 3”?

3. To determine an odd person out, m = 2k + 1 players each toss a coin. If one player’s coin turns up differently
than all the others, that person is declared the odd person out. Suppose that m = 3 players play this game.

(a) List the outcomes in the sample space S.

(b) Let E be the event that no one is declared an odd person out. Which outcomes are in E?

(c) Can you see a pattern in your answer to part (a) that would suggest, without enumeration, the number
of outcomes in S if m = 7? What is that number?

4. Let A and B be any two events defined on a sample space S. Then S is the union of A, Ac ∩ B, and what
other mutually exclusive event?

5. Winthrop, a premed student, has been summarily rejected by all 126 US medical schools. Desperate, he sends
his transcripts and MCATs to the two least selective foreign schools he can think of, the two branch campuses
(X and Y ) of Swampwater Tech. Based on the successes his friends have had there, he estimates that his
probability of being accepted at X (event A) is 0.7 and at Y (event B) is 0.4. He also suspects he knows the
chance that at least one of the applications will be rejected. Compute P(A ∪B) if

(a) P(Ac ∪Bc) = 0.7.

(b) P(Ac ∪Bc) = 0.9.

6. An experiment has two possible outcomes: The first occurs with probability p and the second occurs with
probability p2. Find p.

7. Suppose S has a finite number of outcomes, all equally likely. Let n(A) denote the number of outcomes in the
event A, where A ⊆ S. Define

P(A) =
n(A)
n(S)

.

Show that P(A) satisfies Axioms 1 through 3, as explained in Definition 2.3.1.

8. (a) Specify a sample space for the experiment that consists of drawing 1 ball from an urn containing 10 balls,
of which 4 are white and 6 are red, assuming that the balls are numbered 1 through 10.

(b) Specify a sample space for the experiment that consists of drawing 2 balls with replacement from the urn
containing 10 balls (that is, the first ball removed is placed in the urn before the second is drawn out).
Assume that order matters - getting a 1 and then a 2 is different than getting a 2 and then a 1. Again
assume that they are colored and numbered as in 8(a).
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(c) Specify a sample space for the experiment that consists of drawing 2 balls without replacement from the
urn containing 10 balls (that is, the first ball removed is not placed in the urn before the second is drawn
out). Assume that order matters - getting a 1 and then a 2 is different than getting a 2 and then a 1.
Again assume that they are colored and numbered as in 8(a).

(d) For the sample space given in 8(a), define the events (as subsets):

i. A: A white ball is drawn.
ii. B: A red ball is drawn.

(e) For the sample space given in 8(b), define the events (as subsets):

i. C: The first ball is white.
ii. D: The second ball is white.
iii. E: Both balls are white.

Does C ∩D = E?

9. Two light bulbs are placed on a test until both fail. Assume that each will burn no more than 1600 hours.
Define a reasonable sample space for this experiment and describe, as subsets, the events:

(a) A: Both bulbs fail in less than 1000 hours.

(b) B: Neither bulb fails in less than 1000 hours.

(c) C: The shorter time to failure of the two is 1000 hours.

(d) D: The longer time to failure of the two is 1000 hours.

10. Given S = {1, 2, 3}, A = {1}, B = {3}, C = {2}, P(A) = 1
3 and P(B) = 1

3 , find

(a) P(C).

(b) P(A ∪B).

(c) P(Ac).

(d) P(Ac ∩Bc).
(e) P(Ac ∪Bc).
(f) P(B ∪ C).

11. Prove, from the three axioms, that P(A) ≤ 1 for every set A.

12. Is it possible to have an assignment of probabilities such that P(A) = 1
2 , P(A ∩B) = 1

3 and P(B) = 1
4? Why?

13. How many 5-man squads could be chosen from a company of 20 men?

14. A university committee has 100 members, 60 of whom favor giving Nate Derby a huge raise in his salary. The
committee president is going to randomly choose 10 members (i.e., each has the same chance of being chosen)
who will then vote on whether to give Nate that raise.

(a) How many different sets of 10 people can be made from the 100 members?

(b) How many of these sets will include 6 or more people who favor giving Nate that raise?

(c) How many of these sets will not include 6 or more people who favor giving Nate that raise?

(d) If a majority is needed for it (i.e., a tie won’t do it), what is the probability that Nate will get that huge
raise?

15. How many different 11-letter sequences can be made using the letters in the word MISSISSIPPI? How many
of these begin with an M and end with an I?

16. Each state has 2 senators. What is the probability that in a committee of 50 senators chosen at random (so
that each senator has the same probability of being selected),
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(a) Washington State is represented?

(b) Each state is represented?

17. Johnny Carson screws up the birthday problem. Ross (2006, Ex. 5i, pp. 41-42) explains the birthday problem,
where we see that if we have 23 or more people in the room, the probability that no two of them have the same
birthday is less than 50%. According to one version of the story, Johnny Carson once had a guest on his show
who mentioned this to him. Carson didn’t believe it, so he asked his audience of about 120 people if anyone
shared his birthday, October 23. No one did, and Carson remained unconvinced.

(a) Why is Carson’s question very different from the original birthday problem?

(b) What is the actual probability that none of the 120 people in his audience shared his birthday?

(c) What is the minimum number of people needed in the audience for the probability of none of them sharing
his birthday to be below 50%?

18. If X is a discrete random variable, express P(X ≥ a) in terms of the distribution function of X.

19. Suppose that the distribution function of X is given by

FX(b) =



0 b < 0
b
4 0 ≤ b < 1
1
2 + b−1

4 1 ≤ b < 2
11
12 2 ≤ b < 3

1 3 ≤ b

.

(a) Find P(X = i) for i ∈ {1, 2, 3}.
(b) Find P( 1

2 < X < 3
2 ).

20. If the distribution function of X is given by

FX(b) =



0 b < −1
1
4 −1 ≤ b < 1
3
5 1 ≤ b < 2
4
5 2 ≤ b < 4
9
10 4 ≤ b < 4.5

1 b ≥ 4.5

,

then calculate the probability mass function of X.

21. Nate can remain sane while teaching an accelerated class for a random amount of time X, after which he loses
his mind. If the density of X is given (in units of weeks) by

fX(x) =

{
Cxe−x/2 x > 0

0 x ≤ 0
,

what is the probability that Nate remains sane for the 6 weeks left in the summer term?

22. The pdf of X, the lifetime of a new Apple iPhone 3G (measured in months), is given by

fX(x) =

{
10
x2 x > 10

0 x ≤ 10
.
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(a) Find P(X > 20).

(b) What is the cumulative distribution function of X?

(c) Assuming that the reliability of each iPhone is independent of any other one, what is the probability that
of 6 iPhones, at least 3 of them will function for at least 15 months?

23. Let

fXY (x, y) =

{
21x2y3 0 < x < y < 1

0 otherwise
.

Find

(a) fX(x).

(b) fY (y).

(c) FXY ( 1
2 ,

2
3 ).

(d) FX( 1
2 ).

Are X and Y independent? Why?

24. (a) A student takes a true-false exam that has four questions: Assume she is guessing at the right answer to
each question. Define X1 = the number she gets right of the first two questions, X2 = the number she
gets right of the last two questions.

i. Derive the pmf for (X1, X2).
ii. Repeat this exercise assuming each exam question is a multiple choice with four possible responses.

(b) For the case discussed above, define Y1 = the number she gets right of the first 3 questions and Y2 = the
number she gets right of the last 3 questions. Answer the above two questions for (Y1, Y2).

(c) What are the marginal pmfs for X1, X2, Y1, Y2 defined above?

25. What must A equal if

fXY (x, y) =

 A
x

y
x ∈ (0, 1), y ∈ (1, 2)

0 otherwise

is to be a density function? Are X and Y independent? Why?

26. Suppose that X and Y are continuous random variables with the joint pdf

fXY (x, y) =

{
e−y x ∈ (0, 1), y > 0

0 otherwise
.

Find the marginal pdfs is X and Y . Are X and Y independent?

27. Assume (X,Y ) has the density

fXY (x, y) =
1
2

for (x, y) inside the square with corners (a, a), (a,−a), (−a, a), and (−a,−a), and that fXY (x, y) is zero
elsewhere.

(a) Find a.

(b) Find the marginal densities for X and Y .

(c) Are X and Y independent? Why?
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10.3 Dependent and Independent Events

1. If P(A) = a and P(B) = b, then show that P(A|B) ≥ a+b−1
b .

2. Consider a sample size of 3 balls drawn in the following manner: We start with an urn containing 5 white and
7 red balls. At each trial a ball is drawn and its color is noted. The ball drawn is then returned to the urn,
together with an additional ball of the same color. Find the probability that the sample will contain exactly

(a) 0 white balls.

(b) 1 white ball.

(c) 3 white balls.

3. In answering a question on a multiple-choice test, a student either knows the answer or guesses. Let p be the
probability that the student knows the answer and 1−p the probability that the student guesses. Assume that a
student who guesses at the answer will be correct with probability 1

m , where m is the number of multiple-choice
alternatives. What is the conditional probability that a student knew the answer to a question, given that he
or she answered it correctly?

4. If two fair dice are rolled, what is the conditional probability that the first one lands on 6, given that the sum
of the dice is i? Compute this for all values of i between 2 and 12.

5. Suppose that you continually collect coupons and that there are m different types of them. Suppose also that
each time a new coupon is obtained, it is a type i coupon with probability pi, i ∈ {1, . . . ,m}. Now suppose
that you have just collected your nth coupon. What is the probability that it is a new type of coupon?

6. From a set of n randomly chosen people, let Eij denote the event that persons i and j have the same birthday.
Assume that each person is equally likely to have any one of the 365 days of the year as his/her birthday. Find

(a) P(E3,4|E1,2).

(b) P(E1,3|E1,2).

(c) P(E2,3|E1,2 ∩ E1,3).

What can you conclude from the above about the independence of the
(
n
2

)
events Eij?

7. A family has n children with probability αpn, n ≥ 1, where α ≤ 1−p
p .

(a) What proportion of families have no children?

(b) If each child is equally likely to be a boy or a girl (independently of each other), what proportion of
families consists of i boys (and any number of girls)?

8. Consider an American roulette wheel with 38 slots: 18 red, 18 black, and 2 green. If you bet $1 on red, you
win $1, and thus receive $2 total. Otherwise, you lose your initial dollar. Kat has $3 and is following a policy
of betting $1 on red each time. She will stop on either her first win or when she loses all her money. Let X =
Kat’s gain. Find the pmf of X, as well as E[X].

10.4 Probability Laws

1. Independent trials that result in a success with probability p are successively performed until a total of r
successes is obtained. Show that the probability that exactly n trials are required is(

n− 1
r − 1

)
pr(1− p)n−r.

2. Five fair dice are rolled. Let X denote the number of 1’s that occur. Find
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(a) P(1 ≤ X ≤ 4).

(b) P(X ≥ 2).

3. Ten fair coins are tossed onto a table. Let Z denote the number of coins which land heads up. Compute
P(Z = 5).

4. A bag contains 10 flashbulbs, 8 of which are good. If 5 flashbulbs are chosen from the bag at random (without
replacement), what is the probability mass function for the number of good flashbulbs chosen? What is the
probability mass function for the number of bad flashbulbs chosen?

5. X ∼ B(n, p). What value of p maximizes P(X = k) for k ∈ {1, . . . , n}? This is known as the maximum
likelihood estimation method of estimating p. That is, if we assume that X ∼ B(n, p) and n is known, then we
estimate p by choosing the value of p that maximizes P(X = k).

6. Assume that 1 baby in 10,000 is born blind. If a large city hospital has 5000 births in a given year, approximate
the probability that none of the babies born that year was blind at birth. Also approximate the probabilities
that exactly 1 is born blind, and that at least 2 are born blind.

7. Let X be a Poisson random variable with parameter λ. What value of λ maximizes P(X = k), k ≥ 0? As
with problem above, this is the maximum likelihood estimate of λ when we have data and want to make a best
guess as to what λ is.

8. In the morning, students enter the STAT/MATH 394 class at a rate of 1 for every 3 minutes.

(a) What is the probability that no one enters between 8:15 and 8:20?

(b) What is the probability that at least 4 students enter the classroom during that time?

9. Calls arrive at a switchboard according to a Poisson process with parameter λ = 5 per hour. If we are at the
switchboard, what is the probability that

(a) it is at least 15 minutes until the next call?

(b) it is no more than 10 minutes until the next call?

(c) it is exactly 5 minutes until the next call?

10. A newsboy is selling papers on The Ave. The paper he sells are events in a Poisson process with parameter
λ = 50 per hour. If we have just purchased a paper from him, what is the probability that it will be at least 2
minutes until he sells another? If it is already 5 minutes since his last sale, what is the probability that it will
be at least 2 more minutes until his next sale?

11. Suppose that n independent trials are performed such that each one has a probability p of being a success.
These trials are performed over and over again until a success occurs. If X equals the number of trials required,
show that

P(X = n) = (1− p)n−1p, n ∈ Z+

and that these probabilities add up to one over all values of n. This is called the geometric distribution.

12. It has been assumed empirically that deaths per hour due to traffic accidents occur at a rate of 8 per hour
on July 4th weekend in the US. Assuming that these deaths occur independently under a Poisson process,
compute the probabilities that

(a) A 1-hour period would pass with no deaths.

(b) A 15-minute interval would occur with no deaths.

(c) 4 consecutive 15-minute periods would occur with no deaths.

13. X is uniformly distributed on (0, 2) and Y is exponential with parameter λ. Find the value of λ such that
P(X < 1) = P(Y < 1).
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14. One student loves STAT/MATH 394 A so much, the time that he arrives to class is a normal random variable
with µ = 8:05 and σ = 8 minutes. What is the probability that

(a) He arrives before 8:00?

(b) He arrives between 8:15 and 8:30?

(c) He arrives late for class?

When doing this problem, for convenience feel free to convert the problem fromX = {time that student arrives}
to Y = {minutes after 8:00 that student arrives}.

10.5 Functions of Random Variables

1. Let X have the pmf

pX(x) =


1
8 x ∈ {±1,± 1

2}
1
2 x = 0
0 otherwise

.

Find the pmf for the following functions:

(a) X2.

(b) eX .

(c) 2X + 1.

(d) 2X2 + 1.

2. Suppose that a fair six-sided die is rolled twice. What are the possible values and associated probabilities that
the following random variables can take on?:

(a) The maximum value to appear in the two rolls.

(b) The minimum value to appear in the two rolls.

(c) The sum of the two rolls.

(d) The value of the first roll minus the value of the second roll.

3. Let X be uniformly distributed on the interval from -1 to 1. Find the pdf of the functions given:

(a) X2.

(b) eX .

(c) 2X + 1.

(d) 2X2 + 1.

4. Let X be normally distributed with parameters µ = 0 and σ2 = 1. Find the pdf of the functions given:

(a) X2.

(b) eX .

(c) 2X + 1.

5. Find the pdf of X = cos(θ), where θ is uniformly distributed from −π to π.

6. Let X1, X2
iid∼ U(0, 1). Find the pdf of the functions given:

(a) X1 +X2.
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(b) X1 −X2.

(c) min(X1, X2).

(d) max(X1, X2).

(e) X1X2.

7. Let X1, X2
iid∼ Exp(λ). Find the pdf of Y = X1 −X2 using Jacobians.

8. Let X1, X2
iid∼ P(λ). Find the pmf of Y = X1 +X2.

9. For a given n ∈ Z+ = {1, 2, 3, . . .}, a Chi-squared distribution with n degrees of freedom, denoted χ2
n, is defined

as a Gamma
(
n
2 ,

1
2

)
distribution. Suppose X ∼ χ2

n.

(a) What is the pdf of X?

(b) What is the pdf of Y = X
1+X ?

(c) It can be shown that if Y1 ∼ χ2
n1

, Y2 ∼ χ2
n2

, and the two of them are independent, then Y1 +Y2 ∼ χ2
n1+n2

.

Use this to prove by induction that if Z1, Z2, . . . , Zn
iid∼ N(0, 1), then

n∑
i=1

Z2
i ∼ χ2

n.

10.6 Mathematical Expectation

1. Let X have the pmf

pX(x) =


1
5

x ∈ {2, 4, 6, 8, 16}

0 otherwise
.

Calculate the following:

(a) E[X].

(b) E[X2].

(c) E
[

1
X

]
.

(d) E
[
2X/2

]
.

(e) σ2
X .

(f) σX .

2. If E[X] = 1 and Var(X) = 5, then find

(a) E[(2 +X)2].

(b) Var(4 + 3X).

3. Let X be a binomial random variable with parameters n and p, denoted as X ∼ B(n, p). Show that

E
[

1
X + 1

]
=

1− (1− p)n+1

(n+ 1)p
.

4. Suppose there is a lottery with 10,000 tickets and a grand prize of $3000. What is the expected value and
variance of your winnings if a ticket costs $1 and

(a) you buy one lottery ticket?

(b) you buy 100 lottery tickets?
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5. How insurance companies make their money. An insurance company writes a policy to the effect that an amount
of money m must be paid if the policy holder dies within one year. If a smart student from STAT/MATH 394
who then went on to pass the first exam in the fall of 2008 estimates that the policy holder will die within one
year with probability p, what should the insurance company charge for its expected profit to be 15% of m?

6. The St. Petersburg Paradox A person tosses a fair coin until a tail appears for the first time. If the tail first
appears on the nth flip, the person wins 2n dollars. Let N denote the flip that results in the first tail.

(a) Find P(N = n) for n ∈ Z+.

(b) What is the expected value of the player’s winnings?

(c) A game is considered fair if the expected value of the earnings equals $0. How much money should
someone pay to play this game if the game is to be fair?

7. Now suppose the game described in problem 6 is truncated at 20 flips. That is, the game stops on the 20th
flip if it hasn’t stopped already.

(a) What is the expected value of the player’s winnings?

(b) How much money should someone pay to play this game if the game is to be fair?

8. Now suppose the game described in problem 6 is modified such that if N > 20 (i.e., if the game continues
beyond the 20th flip), you win $(220).

(a) What is the expected value of the player’s winnings?

(b) How much money should someone pay to play this game if the game is to be fair?

9. Suppose the pdf of X is given by

fX(x) =

{
2(1− x) 0 < x < 1

0 otherwise
.

Calculate the following:

(a) E[X].

(b) E[X2].

(c) E[(X + 10)2].

(d) E
[

1
1−X

]
.

(e) Var(X).

(f) SD(X).

10. Show that

E[Y ] =
∫ ∞

0

P(Y > y)dy −
∫ ∞

0

P(Y < −y)dy.

11. (a) A fire station is to be located along a road of length A, A < ∞. If fires will occur at points uniformly
distributed over the interval (0, A), where should the station be located so as to minimize the expected
distance from the fire? That is, choose a so as to minimize E[|X − a|] when X is uniformly distributed
over (0, A).

(b) Now suppose that the road is of infinite length, stretching from point 0 outwards toward∞. If the distance
of a fire from point 0 is exponentially distributed with rate λ, where should the fire station now be located?
That is, choose a so as to minimize E[|X − a|] when X is now exponentially distributed with rate λ.

12. Let X ∼ N(1, σ2 = 4) be independent of Y ∼ N(1, σ2 = 9). Find the following:
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(a) E[3X − 9Y + 4].

(b) E
[
X2 + Y 2

]
.

(c) Var(3X − 9Y + 4).

(d) P(X < Y ). [Hint: What is the distribution of X − Y ?]

(e) the pdf of V = 3X − 9Y + 4.

(f) the pdf of W = (3X−9Y+6)2

765 .

13. N people arrive separately to a professional dinner. Upon arrival, each person looks to see if he or she has any
friends among those present. That person either sets at the table of a friend or at an unoccupied table if none
of those present is a friend. Assuming that each of the

(
N
2

)
pairs of people are, independently, friends with

probability p, and that there are N tables available, find the expected number of occupied tables after all N
people arrive.

Hint: Let Xi equal 1 or 0, depending on whether the ith arrival sits at a previously unoccupied table.

14. Let X ∼ U(a, b). Find its moment generating function and characteristic function.

15. Let X ∼ Geometric(p). Find its moment generating function and use it to show that E[X] = 1
p .

Hint: For this solution, you probably need to use the formula for the sum of a geometric series – i.e.,
∞∑
k=0

rk =

1
1− r

for |r| < 1. But how do we know that |r| < 1 in this problem? (You might need to use some real analysis

for this) Alternatively, can you find a way to correctly do this problem without using the formula for the sum
of a geometric series?

16. Use moment generating functions to prove that ifX1, X2, . . . , Xn
iid∼ N(µ, σ2), thenXn =

1
n

n∑
i=1

Xi ∼ N
(
µ, σ

2

n

)
.

The moment generating function for a N(µ, σ2) distribution is eµt+σ
2t2/2. You can use this for this problem,

or you can prove that this is the correct moment generating function.

17. In Homework 2, Problem 1(c), we assumed that if Y1 ∼ χ2
n1

, Y2 ∼ χ2
n2

, and the two of them are independent,
then Y1 + Y2 ∼ χ2

n1+n2
. Now prove it, using moment generating functions.

The moment generating function for a χ2
n distribution is

(
1

1−2t

)n/2
. You can use this for this problem, or for

extra credit, you can prove that this is the correct moment generating function.

10.7 Jointly Distributed Random Variables, Continued

1. Use the logic from class handout 2 to show that if X1, . . . Xn
iid∼ fX(x), then

fX(i)X(j)(xi, xj) =
n!

(i− 1)!(j − i− 1)!(n− j)!
[FX(xi)]

i−1 [FX(xj)− FX(xi)]
j−i−1 [1− FX(xj)]

n−j
fX(xi)fX(xj)

A rigorous mathematical proof is not necessary; an informal argument will suffice.

2. Let X1, X2, . . . , X10
iid∼ Exp(λ). Find

(a) the pdf of X(1).

(b) the pdf of X(10).

(c) the joint pdf of X(1) and X(10).

(d) the pdf for the range R = X(10) −X(1).

158



10 - Supplementary Problems

(e) P(R > 100 hours) if λ = 0.01 per hour

3. Suppose that X and Y are two random variables jointly distributed with pdf

fXY (x, y) =

{
y2e−y(x+1) x, y ≥ 0

0 otherwise
.

Find the following:

(a) FY (y).

(b) FXY (2, 4).

(c) fX|Y (x|y).

(d) E[X|Y = 10].

4. Let X1, X2, X3 be a random sample from the distribution with a pdf of fX(x) = 2x for x ∈ (0, 1). Find the
probability that the smallest of these Xis exceeds the median of the distribution.

5. Let X1, X2
iid∼ N(0, σ2). Show that E

[
X(1)

]
= −σ/

√
π.

6. Let X1, . . . , Xn
iid∼ U(0, 1). Show that

P(X(k) −X(k−1) > t) = (1− t)n, k ∈ {1, 2, . . . , n+ 1},

where X0 ≡ 0 and Xn+1 ≡ 1.

10.8 Limiting Distributions

1. Assume that bags of Victrola coffee beans are packaged into boxes containing 50 bags, and that the expected
weight is 16 ounces and the standard deviation is 1

2 ounce. Find the approximate probability that a box of
coffee beans (in bags) weighs less than 805 ounces.

2. Suppose that the number of airplanes arriving in any 30-minute period obeys a Poisson probability law with
mean 64. Use Chebyshev’s inequality to determine a lower bound for the probability that the number of
airplanes arriving in a 30-minute period will be between 48 and 80, non-inclusive.

3. Two types of coins are produced at a factory: A fair coin and a biased one that comes up heads 55% of the
time. We have one of these coins but do not know whether it is a fair coin or a biased one. In order to ascertain
which type of coin we have, we shall perform the following hypothesis test : We shall toss the coin 1000 times. If
the coin lands on heads 525 or more times, then we shall conclude that it is a biased coin; Otherwise, we shall
conclude that it is fair. If the coin is actually fair, what is the probability that we shall reach a false conclusion
(called a type I error)? What would it be if the coin were biased (called a type II error)?

4. From past experience, Garth Warner knows that the test score of a student taking his final exam is a random
variable with mean 75.

(a) Give an upper bound for the probability that a student’s test score will be 85 or above.

Suppose, in addition, that he knows that the variance of a student’s test score is equal to 25.

(b) What can be said about the probability that a student will score between 65 and 85?

(c) How many students would have to take the exam so as to ensure, with probability at least .9, that the
class average would be within 5 of 75? Use the weak law of large numbers.

(d) Use the central limit theorem to solve part (c) above.
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(e) Of the two answers you have for (c) and (d) above, which method gave you the smaller answer (i.e., the
number of students)? Why do you think that method gave you the smaller answer?

5. Upon graduating, Kelly Jones and Jamie Kam start a restaurant. Their marquee (optimally placed near an
I-5 exit) uses a huge light bulb whose lifetime is exponentially distributed with mean of 5 hours.

(a) If they have 100 of these light bulbs (whose lifetime distributions are independent from one another) and
they are used one at a time, with a failed bulb being immediately replaced by a new one, what is the
approximate probability that there is a still a working bulb after 525 hours?

(b) Suppose that it takes a random time, uniformly distributed over (0, .5) hours to replace a failed bulb.
What is the approximate probability that there is still a working bulb after 550 hours?

6. (A problem from an actuarial exam) A local auto insurance company insures 100 individuals during a specific
period. Suppose each insured claims independently, and the number of claims of each insured during this period
has the following probability distribution:

X: x (possible claims) 0 1 2 3

P(X = x) 0.64 0.14 0.10 0.12

(a) What is the approximate probability that there are at least 70 total claims during this period?

(b) What is the approximate probability that there are less than 60 insured individuals who claim nothing
during this period?

7. In example 2.2 of page 93 of the notes, we see in the graph that the Gamma(n, λ) distribution can be
approximated by the normal distribution. Use the Central Limit Theorem to prove that as n → ∞, the
Gamma(n, λ) distribution approaches the normal distribution. What will be the mean and variance of this
normal distribution?
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A Probability vs Statistics

According to one academic (Skiena, 2001),

Probability deals with predicting the likelihood of future events, while statistics involves the analysis of the
frequency of past events.

This is a generally accurate description, with one important distinction: While statistics analyzes past events, it
is almost always done with the purpose of predicting the likelihood of future events. For example, if we test an
experimental drug on lab mice, we don’t really care about what happened to those mice - what we really care about
is what will happen to future mice (and, eventually, future humans) if we administer the drug to them under the
same conditions. Statistics thus can be divided into two categories:

• Descriptive statistics analyzes events of the past to answer the question “What happened?” without much
thought of using that data to predict future events. This often involves nothing more than showing a few pie
charts and graphs.

• Inferential statistics analyzes events of the past to answer the question “What is going to happen?”. This
involves building mathematical models for the data, and then using those models to answer the question.

As one might expect, the latter is far more difficult (and interesting) to do. Indeed, when you take a class in statistics
at the university level, it is almost always inferential statistics and not descriptive statistics (which can be learned
with little or no math).

Inferential statistics makes heavy use of probability theory to answer the question “What is going to happen?”. Here
is a concrete example:

• In probability, if you have a coin with probability p of getting heads and 1− p of getting tails, you can figure
out how to find the probability that flipping a coin 10 times will give you 5 heads.

• In descriptive statistics, if you take one coin and flip it many times, you can figure out how to come up with a
fairly good estimate of p for the above problem.

• In inferential statistics, you can then use your estimate of p (and its estimated accuracy) to figure out the
probability that if you flip this same coin 10 more times, that you will get 5 heads. Even more, you can come
with a measure of accuracy for this prediction.

If it helps, we can think of it this way:

• Probability = predicting the likelihood of future events.

• Descriptive statistics = analyzing the frequency of past events.

• Inferential statistics = using the above two together to predict future events, given past events.

This might explain why a student can take probability without statistics, but not the other way around (without
feeling completely overwhelmed).
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Econometrics is a term that is commonly used to refer to those areas of (inferential) statistics that are used in
economics - most notably, regression and time series analysis. Furthermore, it refers to areas in regression and time
series that are used more by economists than by the statistical world in general - mostly for philosophical reasons.
For example, the term stochastic process refers to any statistical process indexed over time or space. While statistics
can involve any kind of stochastic process, econometrics often focuses on just a few kinds of stochastic processes,
such as an autoregressive integrated moving average model.

Note that econometrics is not the only area of statistics used in economics: Risk analysis is a new area (ten years old
or so) that involves looking at high-frequency data, such as in the stock market, using computational techniques that
were not possible before the age of high-speed computers. This is not considered part of the word “econometrics” for
mostly historic reasons: That word has been used for about 100 years only in reference to time series and regression,
and it would be difficult to change that definition now.
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B Counting: An Introduction

This is a tutorial on counting methods, intended to help anyone who has difficulty with counting methods used in
Section 2.1 The aim with these notes is to give a basic grounding in counting, and discuss the translation of word
problems into the exact counting question desired.

B.1 Why Is Counting Important for Probability?

From the discussion on top of page 15, we know that if each point in the sample space S is equally likely, then

P(A) =
Size of A
Size of S

=
Number of events in A

Number of events in S
. (B.1.1)

It’s usually very easy to compute the number of events in the sample space S. For this special case of equally-likely
events (and only for this special case), this section gives techniques for determining the number of events in the event
A, which then allows us to compute the fraction above.

B.2 How to Count

In this section, a counting problem will concern a set of objects and a subset with particular properties. The most
important points in a counting problem in this course are the following:

1. Does order matter?

2. Are objects distinguishable from each other?

3. Are objects chosen with or without replacement?

In general, objects are chosen without replacement. If they are replaced, it is either obvious from context (i.e. how
many different strings of letters can you get that are 10 letters long; here we obviously allow the same letter to be
used more than once), or it is mentioned in the problem. If there is something stranger (in one problem, objects
were chosen with new objects added after each choice depending on the choice made), then it will definitely be in
the problem. I leave determining what to do with those situations as an exercise for the reader, but the basics shown
here should provide enough guidance.

Example B.2.1. A bridge hand has 13 cards. How many possible bridge hands are there?

Here, order does not matter, only the particular cards in the hand do; every card is distinguishable from every other
card; and they are chosen without replacement. �

Example B.2.2. How many different ways are there to rearrange the letters of the word ‘MISSISSIPPI’?

Here order matters, there are distinguishable groups of indistinguishable objects (i.e. the letter M is different from
I, but there is no difference between P s), and the letters are chosen without replacement. �

1This appendix is written by D.J. Schreffler, who took STAT/MATH 394/395 from Mr. Derby in the summer of 2008. Ideas and
problems in this appendix were derived from Bóna (2006) and D’Angelo and West (2000), as well as from Mr. Derby’s homeworks.
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Once the questions about order, distinguishability, and replacement are answered, the next questions are the following,
which will set us up to compute (B.1.1):

1. What size is my sample space?

2. What size is the set of events that I am interested in?

Example B.2.3. What is the probability of a full house in 5-card stud?

Here we see that order does not matter, the objects are distinguishable, and they are chosen without replacement.
What is the size of the sample space? The number of possible hands of 5 cards chosen from 52. How many of those
are full houses? Those with a pair and a three-of-a-kind. �

Definition B.2.1. A combination is a subset of k distinguishable objects out of a set of n where 0 ≤ k ≤ n. The
standard example is a hand of cards. There are

n!
k!(n− k)!

combinations, written
(
n
k

)
and pronounced “n choose k,” taking 0! = 1. From this, it should be obvious that(

n
k

)
=
(
n

n−k
)
. This is also called the binomial coefficient, the reason for which I present below.

Example B.2.1 Revisited. A bridge hand has 13 cards. How many possible bridge hands are there?

There are 52 cards, and we choose 13 of them to be in a bridge hand, so we want
(

52
13

)
= 52!

13!39! . �

Definition B.2.2. A permutation is an ordering of a set. Given a string of n different characters, there are n!
different ways that they can be ordered.

Example B.2.2 Revisited. How many different ways are there to rearrange the letters of the word ’MISSISSIPPI’?

Imagine that we label all of the duplicated letters as follows: MI1S1S2I2S3S4I3P1P2I4. Then there are 11! different
orderings of these characters. But all of the Is are identical, so divide by 4!. The Ss and P s are identical, so divide
by 4! and 2!. For completeness’ sake, divide by 1! for the M to obtain

11!
1!2!4!4!

.

This is also written as
(

11
1,2,4,4

)
. �

Definition B.2.3. Let n =
k∑
i=1

ai, such that ai ≥ 0 ∀i. Then
(

n
a1,a2,...,ak

)
= n!

a1!a2!...ak! . These numbers are called

multinomial coefficients for the same reason that
(
n
k

)
is the binomial coefficient, and

(
n
k

)
can be written as

(
n

k,n−k
)

as well.

Regarding replacement: If objects are replaced, then it generally results in a power. (How many different 10-
letter strings are there? 2610.) If objects are not replaced, it generally results in some sort of factorial. (See above
examples.)
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Why the names binomial and multinomial coefficients: First, the binomial. Consider (x + y)n. When
computing this product, we take one variable (x or y) from each (x + y) term, and multiply them together. Each
such multiplication can be thought of as a string n characters long with only x and y allowed as letters. So for a
string n characters long, we choose k of them to be x, leaving the other (n− k) of them to be y. The order we select
the positions does not matter because we will re-order them so that all xs are together and all ys are together when
we are done. The positions are chosen without replacement, and are all distinguishable from each other. So there
are

(
n
k

)
different ways to get a xkyn−k term, and therefore it has coefficient

(
n
k

)
. By similar reasoning,

(
n

a1,a2,a3,...,ak

)
is the coefficient of the xa1

1 xa2
2 xa3

3 . . . xakk term of (x1 + x2 + x3 + . . .+ xk)n.

B.3 More Than One Way to Count

Now even though for any problem there is one right answer, it does not follow that there is only one right way of
obtaining that answer.

Example B.3.1. There are n people. How many different ways are there of forming a k-member committee for
3 ≤ k ≤ n given that one of them is the chairman of the committee? Bonus question: Why do I set 3 as a lower
limit?

Solution 1: Choose 1 person as chairman, then the rest of the k − 1 regular members from the n− 1 people left, to
get (

n

1

)(
n− 1
k − 1

)
.

Solution 2: Choose the k − 1 regular members first, then choose the chairman from the remaining n− k + 1 people
to get (

n

k − 1

)(
n− k + 1

1

)
.

Solution 3: Choose all k committee members, then choose the chairman from among the committee, to get(
n

k

)(
k

1

)
.

Solution 4: We can look at this as choosing 1 chairman, k−1 regular members, and n−k non-members simultaneously,
to get (

n

1, k − 1, n− k

)
.

Now all of these count the same thing, so they should evaluate to the same expression, and they all do:

n!
(k − 1)!(n− k)!

. �

The reason I put this in is to show that it does not matter exactly how you count something, as long as you count
all of what you are supposed to (and nothing else). Here’s another example.
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Example B.3.2. How many different ways are there to place n identical rooks on an n by n chessboard such that
no rook threatens any other rook?

Solution 1: The first rook can be placed in any of n2 spaces. Without loss of generality, assume that it is the lower
left corner. There are obviously (n − 1)2 spaces left for the second rook. Without loss of generality, again assume
that we choose the lower left space left available, to obviously leave (n − 2)2 spaces left not threatened by either
rook, so there are n2(n− 1)2 choices for the first two rooks. This continues until we get n!2. However, each rook is
identical, so it does not matter what order we place them down. So divide by n! to obtain simply n!.

Solution 2: Number the columns from left to right and the rows from top to bottom. Each row can hold only 1
rook, so there must be 1 per row; same for columns. So take an n-character string with possible values in each spot
ranging from 1 to n. The place in the string indicates the row (i.e. first space is for row 1), and the character in
that space indicates the column (a ‘4’ in the first space indicates that the rook in row 1 goes in the column 4. This
is simply an arrangement without replacement of the numbers from 1 to n, and we know that there are n! of them.

�

B.4 How to Interpret Problems

By now we have gone through elementary counting, and that there can be several different ways to count any given
problem. There is still a gap between counting something and knowing what it is to count. Here is a problem that
tripped many people up on the first midterm:

Example B.4.1 (Yip Yips). On the planet of the Yip Yips, the natives play poker with a standard deck of cards,
but with 9 cards in hand. Find the probability that a Yip Yip hand will contain the following:

1. Three pairs and a triple.

2. Two triples and three singletons.

3. A flush (including straight flushes).

4. A straight (including straight flushes) where the ace can be either high or low.

Solution:

Because this problem tripped so many people up, I take the answer derivation step by step explicitly so that the
how of the problem is clear. Immediately we see that we are dealing with card hands, so order does not matter, and
objects are chosen without replacement. If we were dealing with the way that the hand is dealt, then order would
matter, but objects would still be chosen without replacement. Objects are distinguishable by both rank and suit.
So yes they are distinguishable, but we may want to put them in groups later on, depending on what we want to
count. Finally, the size of the sample space is the same for all four questions: there are 52 cards, and we choose 9 of
them, for a sample space of size

(
52
9

)
. All that is left to do is to count the number of events we are interested in and

divide by
(

52
9

)
to get the desired answers.

1. Three pairs and a triple. What does this mean? It means that there are three different ranks that we have two
suits of, and one additional rank that we have three of. We can choose either the pairs or the triple first. Since
the difference in difficulty doing it one way or the other is trivial in this circumstance, I choose to count the
pairs first, since they are mentioned first. There are 13 ranks, of which we choose 3 for pairs. There are

(
13
3

)
ways this can be done. What does it mean to be a pair? It means that out of 4 suits, we have 2. This can be
done

(
4
2

)
ways. Since there are 3 pairs, we do this three times, to obtain

(
4
2

)3
. Now for the triple. There are

now 10 available ranks (since we chose 3 of them for the pairs), and we want 1 of them, for a factor of
(

10
1

)
.
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What does it mean to be a triple? It means that out of 4 suits, we have 3. This can be done
(

4
3

)
ways. So the

total number of hands that have 3 pairs and a triple are
(

13
3

)(
4
2

)3(10
1

)(
4
3

)
. All that is left to do is divide by

(
52
9

)
to get (

13
3

)(
4
2

)3(10
1

)(
4
3

)(
52
9

) .

2. Two triples and three singletons. This is rather easy, as we can use some of our reasoning from the first part. In
particular, there are still 3 pairs, so we already have

(
13
3

)(
4
2

)3
. Now what does it mean to have three singletons?

It means that there are 3 separate ranks, each of which we have 1 suit from. So there are 10 available ranks,
and we choose 3 of them to get

(
10
3

)
, and each rank there are 4 suits and we choose 1 to get

(
4
1

)3
. Multiplying

together, and dividing by the sample space size yields(
13
3

)(
4
2

)3(10
3

)(
4
1

)3(
52
9

) .

3. A flush (including straight flushes). What does it mean to be a flush? It means that we have 9 different ranks,
all of them of the same suit. So simply choose 9 ranks from 13 to get

(
13
9

)
, then choose 1 suit from 4 to get(

4
1

)
. Multiply together, and divide by sample space size to get(

13
9

)(
4
1

)(
52
9

) .

4. A straight (including straight flushes) where the ace can be either high or low. What does it mean to be a
straight? It means that we have 9 consecutive ranks. Since the ace can be either high or low, we have the
following possible values for our straight:

A, 2, 3, 4, 5, 6, 7, 8, 9 2, 3, 4, 5, 6, 7, 8, 9, T
3, 4, 5, 6, 7, 8, 9, T, J 4, 5, 6, 7, 8, 9, T, J,Q
5, 6, 7, 8, 9, T, J,Q,K 6, 7, 8, 9, T, J,Q,K,A

So whatever we come up with for ways of choosing suits, we multiply by 6. Now for each card, there are 4
choices of suit without restriction, and with replacement, so the number of possible suit choices in a straight is
49. This leads to a probability of

6× 49(
52
9

) . �

B.5 Challenging Examples

These two challenging problems were given on the first homework assignment, and were considered by many to be
the most challenging problems of the 394/395 courses.2

2They also illustrate the danger for the instructor of assigning a homework problem before deriving the solution!
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Example B.5.1. Tom and Jerry both have standard 52-card decks. They both take the top card and lay it down face
up, and repeat this until the decks are exhausted. What is the probability that

a. Tom and Jerry match cards exactly every time?

b. Tom and Jerry match ranks, but not necessarily suits each time?

c. Tom and Jerry match suits, but not necessarily ranks each time?

d. Tom and Jerry match ranks, but have different suits each time?

Solution:

This is a standard 52-card deck. Because all of the cards are used, we can just say that Tom has an arbitrary order,
and that Jerry has to have the cards that fulfill the requirements. (The importance of using the entire deck in this
problem will become clear next section where we do not use the entire deck.) The other alternative, which is also
correct, is to consider the likelihood of Tom’s orders as well as Jerry’s, but the result of that is simply to multiply
both numerator and denominator by 52!. (Aside: multiplying by convenient expressions of 1 or adding convenient
expressions of 0 is a very useful technique that we often used to get nice integrals in Math/Stat 395. It is just that
this expression of 1 is not convenient in this circumstance.)

a. Tom and Jerry match cards exactly every time? Tom has one particular order out of a possible 52!. In order
to match, Jerry must have that exact order, for a probability of

1
52!

.

b. Tom and Jerry match ranks, but not necessarily suits each time? Tom has one particular order out of a possible
52!. But this time, in order to match, Jerry can mix up suits as long as the ranks match. For instance, if Tom
has 2♠ 2♥2♦ 2♣ as the first four cards, Jerry could have 2♥ 2♦ 2♣ 2♠ and still match. So the four cards of
each rank (no matter where they are in the order) can be mixed in any way possible. There are 4! such ways
for each rank, and 13 ranks, so the probability is

(4!)13

52!
.

c. Tom and Jerry match suits, but not necessarily ranks each time? By reversing the role of suit and rank from
the previous part, it is easy to see that the probability is

(13!)4

52!
.

d. Tom and Jerry match ranks, but have different suits each time? This one is interesting. It is similar to part b,
but instead of allowing all 4! orders, we disallow any order such that Jerry and Tom match any suit. Ultimately,
just enumerate the possible orders for the suits of each rank. If Tom has the order ♠ ♥ ♦ ♣, then Jerry might
have:

♥♠♣♦ ♥♣♠♦ ♥♦♣♠
♦♠♣♥ ♦♣♠♥ ♦♣♥♠
♣♠♥♦ ♣♦♠♥ ♣♦♥♠

So Jerry has 9 possible orders of suits for each rank, and there are 13 ranks, so the probability is

913

52!
. �
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Example B.5.2. Tom and Jerry both have standard 52-card decks. They both take the top card and lay it down face
up, and repeat this only three times. What is the probability that

a. Tom and Jerry match cards exactly every time?

b. Tom and Jerry match ranks, but not necessarily suits each time?

c. Tom and Jerry match suits, but not necessarily ranks each time?

d. Tom and Jerry match ranks, but have different suits each time?

Solution:

The first thought might be that with only 3 cards instead of the entire deck, this would be easier than problem 17.
This is incorrect because with problem 17 the entire deck was used in each order, eliminating the need for cases and
allowing us to focus only on Jerry’s order rather than both decks’ orders. The second thought might be that it is
only a little bit harder than problem 17. This also turned out to be incorrect, at least for all of us in that class
(including the grader and instructor).

a. Tom and Jerry match cards exactly every time? This is the easiest of the bunch, and because of that, sets
up the expectation that the rest will be easy. Tom’s first three cards have an order. Jerry has a 1

52 chance of
matching the first card. Given that, he has a 1

51 chance of matching the second card. Given both of those, he
has a 1

50 chance of matching the third card, for a probability of 1
52P3

, or

49!
52!

.

b. Tom and Jerry match ranks, but not necessarily suits each time? Here is where the difficulty truly begins,
because in this situation, Tom might have 1, 2, or 3 different ranks, each with a different probability. And
depending on the number of ranks that Tom has, Jerry has a different probability in matching him. Fortunately,
since the probabilities of having 1, 2, or 3 different ranks is disjoint, we can add them at the end.

So the probability that Tom has 1 rank is (13
1 )4P3

52P3
. That is, 13 possible ranks, 4 different ways to choose the

first card, 3 for the second, and 2 for the third, out of 52× 51× 50 possible orders. If Tom has 1 rank, then the
probability that Jerry matches that rank but not necessarily the suit each time is 4

52 ×
3
51 ×

2
50 . So the total

probability that Jerry matches Tom with only 1 rank is (13
1 )4P2

3

52P2
3

.

Now for 2 ranks. One is a pair, and one is a singleton. There are 13 choices for the pair, and then 12 for
the singleton. In the pair, there are 4 choices for the first card and 3 for the second. There are four choices
for the singleton, which can appear in any of the three positions, so the probability that Tom has 2 ranks is
13P2×4P2×4P1×3

52P3
. If Tom has 2 ranks, then the probability that Jerry matches it is 4P2×4P1

52P3
, where there are 4

choices for the first card of the pair, 3 choices for the second, and 4 choices for the singleton, out of a possible
52× 51× 50 orders, for a total of 13P2×4P2

2×4P2
1×3

52P2
3

.

Next is the 3 rank case. This is easier than the 2 rank case, actually. For Tom: 13 choices of rank for the first
card, 12 for the second, 11 for the third, and for each one 4 choices of suit to obtain 13P3×43

52P3
. For Jerry, there

are 4 choices for the first card (any suit of the given rank), 4 more for the second, and 4 more for the third, for
a total of 43

52P3
. So the total probability of Jerry matching Tom with 3 ranks is 13P3×46

52P2
3

.

Finally, add all the probabilities together to obtain:(
13
1

)
4P

2
3 +

(
13P2 × 4P

2
2 × 4P

2
1 × 3

)
+
(

13P3 × 46
)

52P2
3

.
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c. Tom and Jerry match suits, but not necessarily ranks each time? Now we deal with matching suits instead of
ranks, and we proceed in a similar fashion to part b.

The probability that Tom has 1 suit is (4
1)13P3

52P3
. That is 4 possible suits, 13 ways to choose the first card, 12 for

the second, and 11 for the third, out of 52 × 51 × 50 possible orders. If Tom has 1 suit, then the probability
that Jerry matches that suit but not necessarily the rank each time is 13

52 ×
12
51 ×

11
50 . So the total probability

that Jerry matches Tom with only 1 suit is (4
1)13P2

3

52P2
3

.

Now for 2 suits. One is a doubleton (has only two cards) and the other is a singleton. There are 4 choices for
the doubleton suit, and then 3 for the singleton. In the doubleton, there are 13 choices for the first card and
12 for the second. There are 13 choices for the singleton, which can appear in any of the 3 positions. So the
probability that Tom has 2 suits is 4P2·13P2·13P1·3

52P3
. If Tom has 2 suits, then the probability that Jerry matches

it is 13P213P1
52P3

, where there are 13 choices for the first card of the doubleton, 12 choices for the second, and
13 choices for the singleton, out of a possible 52 · 51 · 50 orders. Multiplying the probabilities together, the
probability that Jerry matches Tom with 2 suits is 4P2·13P2

2·13P2
1·3

(52P3)2 = 134·33·26

(52·51·50)2 .

Next is the 3 suit case. As in part b, this is easier than the 2 suit case. For Tom: 4 choices of suit for the first
card, 3 for the second, 2 for the third, and for each suit 13 choices of rank to obtain 4P3··133

52P3
. For Jerry, there

are 13 choices for the first card (any rank of the given suit), 13 more for the second, and 13 more for the third,
for a total of 133

52P3·51·50 . So the total probability of Jerry matching Tom with 3 suits is 4P3·136

52P2
3

= 4·3·2·136

(52·51·50)2 .

Finally, add all the probabilities together to obtain(
4
1

)
13P2

3 + 4P2 · 13P2
2 · 13P2

1 · 3 + 4P3 · 136

52P2
3

=

(
132 · 112 · 32 · 26

)
+
(
134 · 33 · 26

)
+
(
136 · 3 · 23

)
(52 · 51 · 50)2

.

d. Tom and Jerry match ranks, but have different suits each time? This is going to be trickier than the rest of
the questions, since not only do we have to find out how many ways there are to match ranks but avoid suits,
but we have to do it for ranks with 1, 2, and 3 cards in them. Unfortunately, the easiest way is still by brute
enumeration.

If a rank has only 1 suit, say ♠, then there are 3 ways to avoid matching it: ♥, ♦ and ♣.

If a rank has 2 suits, say (♠, ♥), then there are 7 ways to avoid matching it: (♥, ♠), (♥, ♦), (♥, ♣), (♦, ♠),
(♦, ♣), (♣, ♠), and (♣, ♦).

If a rank has 3 suits, say (♠, ♥, ♦), then there are 11 ways to avoid matching it: (♥, ♠, ♣), (♥, ♦, ♠), (♥, ♦,
♣), (♥, ♣, ♠), (♦, ♠, ♥), (♦, ♠, ♣), (♦, ♣, ♠), (♦, ♣, ♥), (♣, ♠, ♥), (♣, ♦, ♠), and (♣, ♦, ♥).

Now that we have that information, we look at what Tom actually has.

From part b, the probability that Tom has 1 rank is (13
1 )4P3

52P3
. From above, we see that there are 11 ways that

Jerry can match rank but not suit out of 52P3 possible ways, for a a total probability of (13
1 )4P3·11

52P2
3

.

Again from part b, the probability that Tom has 2 ranks is 4P2·13P2·13P1·3
52P3

. One of those ranks is a pair, and
so there are 7 ways to match rank but not suit. The other rank is a singleton, and there are 3 ways to match
that rank but not suit. So there are 21 matches out of 52P3 ways, for a total probability of 4P2·13P2·13P1·63

52P2
3

.

Once more, from part b, the probability that Tom has 3 ranks is 4P3·133

52P3
. With each rank, there are 3 valid

matches, so there are 33 total valid matches out of 52P3 orders, for a probability of 4P3·33·133

52P2
3

.

Summing these all together obtains the total probability of((
13
1

)
· 4P3 · 11

)
+ (4P2 · 13P2 · 13P1 · 63) +

(
4P3 · 33 · 133

)
52P2

3

. �
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C Table of Common Distributions

C.1 Discrete Distributions

C.1.1 Binomial

Denoted X ∼ B(n, p).

pX(k) =
(
n

k

)
pkqn−k, n ∈ Z+, k ∈ {0, 1, 2, . . . , n}, p ∈ [0, 1], q = 1− p.

E[X] = np, Var(X) = npq, MX(t) =
(
(1− p) + pet

)n
.

This is used in situations where we have n trials, and each trial just has two choices (0 or 1, success or failure, heads
or tails, etc.), where 1 happens with probability p and 0 has probability q. X is the number of 1’s (successes, heads,
etc) in those n trials.

If n = 1, this is called a Bernoulli distribution.

C.1.2 Geometric

Denoted X ∼ Geometric(p).
pX(k) = pqk−1, k ∈ Z+, p ∈ [0, 1], q = 1− p.

E[X] =
1
p
, Var(X) =

1− p
p2

, MX(t) =
pet

1− (1− p)et
.

This is used in situations where we have n trials, and each trial just has two choices (0 or 1, success or failure, heads
or tails, etc.), where 1 happens with probability p and 0 has probability q. X is the number of trials needed until we
have 1 success.

C.1.3 Hypergeometric

No special notation for this one.

pX(k) =

(
M
k

)(
N−M
K−k

)(
N
K

) , max(0,M − (N −K)) ≤ k ≤M ; M,N,K ∈ Z∗.

E[X] =
KM

N
, Var(X) =

KM

N

(N −M)(N −K)
N(N − 1)

, MX(t) = Something really ugly.

This is used when you are choosing K items out of N of them (each equally likely to be chosen) and you want to
know the probability that k out of K of them are of one type (with a population of M).

C.1.4 Negative Binomial

No special notation for this one.

pX(k) =
(
k − 1
r − 1

)
prqk−r, k, r ∈ Z+; k ≥ r; p ∈ [0, 1], q = 1− p.
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E[X] =
r

p
, Var(X) =

r(1− p)
p2

, MX(t) =
(

pet

1− (1− p)et

)r
.

This is used in situations where we have n trials, and each trial just has two choices (0 or 1, success or failure, heads
or tails, etc.), where 1 happens with probability p and 0 has probability q. X is the number of trials needed until we
have r successes.

C.1.5 Poisson

Denoted X ∼ P(λ∗).

pX(k) = e−λ
∗ (λ∗)k

k!
, k ∈ Z∗, λ∗ > 0.

E[X] = λ∗, Var(X) = λ∗, MX(t) = eλ(et−1).

λ∗ is unitless. This is used in a Poisson process over time (or some other quantity) t, where

• Instead of X, we use N(t), which describes the number of (rare) events that happened up to time t.

• λ∗ = λt, where λ is a rate of some event per quantity in some unit, and t is that time measured in the same
unit.

C.2 Continuous Distributions

C.2.1 Beta

Denoted X ∼ Beta(a, b).

fX(x) =
1

B(a, b)
xa−1(1− x)b−1, 0 < x < 1; B(a, b) =

Γ(a)Γ(b)
Γ(a+ b)

; a, b > 0

E[X] =
a

a+ b
, Var(X) =

ab

(a+ b)2(a+ b+ 1)
, MX(t) = 1 +

∞∑
k=1

(
k−1∏
r=0

α+ r

α+ β + r

)
tk

k!
.

C.2.2 Cauchy

No special notation for this one.

fX(x) =
1

π(1 + (x− θ)2)
x, θ ∈ R; α, β > 0.

E[X],Var(X) and MX(t) do not exist (if you try to calculate them, you will get ∞).

If Y1 and Y2 are iid N(0, 1) random variables, then X = Y1/Y2 has a Cauchy distribution with θ = 0.
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C.2.3 Chi-Squared

Denoted X ∼ χ2
n.

fX(x) =
xn/2−1e−x/2

Γ
(
n
2

)
2n/2

E[X] = n, Var(X) = 2n, MX(t) =
(

1
1− 2t

)n/2
.

This is the same as a Gamma
(
n
2 ,

1
2

)
distribution. If X1, X2, . . . , Xn

iid∼ N(0, 1), then
∑n
i=1X

2
i ∼ χ2

n.

C.2.4 Exponential

Denoted X ∼ Exp(λ).
fX(x) = λe−λx x ≥ 0, λ > 0.

E[X] =
1
λ
, Var(X) =

1
λ2
, MX(t) =

λ

λ− t
.

In a Poisson process with rate λ, the inter-arrival times are exponentially distributed with parameter λ.

C.2.5 Gamma

Denoted X ∼ Gamma(α, β).

fX(x) =
βαxα−1e−βx

Γ(α)
x ≥ 0; α, β > 0.

E[X] =
α

β
, Var(X) =

α

β2
, MX(t) =

(
λ

λ− t

)α
.

If X is the sum of n iid Exp(λ) random variables, then X ∼ Gamma(n, λ).

C.2.6 Normal

Denoted X ∼ N(µ, σ) or X ∼ N(µ, σ2). To avoid confusion, we write something like “X ∼ N(a, σ2 = b)”.

fX(x) =
1

σ
√

2π
e−(x−µ)2/2σ2

, x ∈ (−∞,∞), µ ∈ (−∞,∞), σ ∈ (0,∞).

E[X] = µ, Var(X) = σ2, MX(t) = eµt+σ
2t2/2.

This is also called the Gaussian distribution, or more informally, the bell curve. This is the most important
distribution in statistics because of the Central Limit Theorem, which states that if X1, X2, . . . are identically and
independently distributed for any distribution, the sample mean minus the expected value, divided by the standard
deviation, is distributed as N(0, 1).

Note that if X ∼ N(µ, σ), then X−µ
σ ∼ N(0, 1), which is called the standard normal distribution, and often referred

to as Z.

Since an integral of this distribution is difficult, values are tabulated on tables. Values are given for Φ(z) = P(Z ≤ z)
for z ≥ 0. Note that, since the distribution is symmetric,

Φ(−z) = P(Z ≤ −z) = 1− P(Z ≤ z) = 1− Φ(z).
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C.2.7 Uniform

Denoted X ∼ U(α, β).

fX(x) =
1

β − α
, α < x < β

E[X] =
β + α

2
, Var(X) =

(β − α)2

12
, MX(t) =

ebt − eat

(b− a)t
.

This is arguably the simplest continuous distribution. It is often used (especially in Bayesian statistics) as a starting
point when we have no idea what the distribution looks like, other than the fact that the values will range from α
to β.
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